Patient Registry
Annual Data Report to the Center Directors

2013
MISSION OF THE CYSTIC FIBROSIS FOUNDATION
The mission of the Cystic Fibrosis Foundation is to cure cystic fibrosis and to provide all people with the disease the opportunity to lead full, productive lives by funding research and drug development, promoting individualized treatment, and ensuring access to high-quality, specialized care.

SOURCE OF DATA
Cystic fibrosis patients under care at CF Foundation-accredited care centers in the United States, who consented to have their data entered.

SUGGESTED CITATION
Cystic Fibrosis Foundation Patient Registry 2013 Annual Data Report to the Center Directors Bethesda, Maryland ©2014 Cystic Fibrosis Foundation

PHOTOGRAPHY BY
Derek Smith

SPECIAL ACKNOWLEDGEMENTS
Those who contributed to the maintenance of PortCF, analysis of data and creation of this report: Bruce Marshall Alexander Elbert Kristofer Petren Mary Grimes Aliza Fink Vincent Myers Ase Sewall
September 2014

Dear Friends and Colleagues:

It is a pleasure to share the 2013 Patient Registry Annual Data Report with you. The state of the Cystic Fibrosis Foundation Patient Registry is stronger than ever. Registry data continue to inform many important initiatives, including: clinical trial design, quality improvement, retrospective observational studies, prospective “registry-embedded” observational studies, safety and effectiveness studies of newly approved therapies and comparative effectiveness research. Ongoing collaborations with registry teams in the United Kingdom and Canada are providing opportunities to compare outcomes and practice patterns across countries and health care systems. A steady stream of high-quality publications based on the Registry data is appearing in the peer-reviewed medical literature. The CF Foundation Registry was featured as a case study in the recently published 3rd edition of the AHRQ Handbook: Registries for Evaluating Patient Outcomes, A User’s Guide, and was highlighted as “an outstanding registry” by Larsson et al in a global assessment of patient registries (Health Affairs 31:220-27, 2012).

The tremendous success of the Registry would not be possible without the vital contribution of people with CF and their families who generously agree to share their information, as well as registry coordinators and care team members who collect and enter the data. Our recent audit studies confirm the high degree of completeness and accuracy of the registry data. We are deeply grateful to all who have helped make the Registry an indispensable tool in our shared efforts to improve the health and quality of life for those with CF.

In this year’s report, we’ve again expanded the number of longitudinal analyses and mutation class-specific analyses. Of note, we continue to see favorable trends in pulmonary function and nutritional status, as well as a continuing decrease in the prevalence of Pseudomonas aeruginosa among people with CF. Also notable is the decreased prevalence of MRSA in 2013, reversing the trend of the last 15 years.

We continue to see an increase in the percentage of new CF diagnoses derived from newborn screening, providing an opportunity to help get these infants off to a strong start in life. One worrisome finding, however, is the increasing number of newly diagnosed patients without sweat test results in the Registry. In the era of newborn screening, a complete diagnostic work-up is even more critical as we move towards earlier therapeutic interventions.

We hope that you find this year’s report rich and interesting and that you participate in the discussions generated by the data. This is an exciting time in CF, with advances in health care delivery and new therapeutics with the potential to transform our field. Together, we will track these important developments in the Registry.

Thank you all for your hard work throughout the year on behalf of people with CF and your commitment to the CF Foundation’s mission.

Bruce C. Marshall, M.D.
Senior Vice President of Clinical Affairs
Cystic Fibrosis Foundation
TABLE OF CONTENTS

ABOUT THIS REPORT
- Report Inclusion and Exclusion Criteria ... 6
- Using Box-and-Whisker Plots to Show Center-Level and Population-Level Variation .. 7
- Adoption of Global Lung Initiative (GLI) Equations for Lung Function Assessment ... 8
- Adoption of World Health Organization (WHO) Growth Standards for Infants Under 2 Years of Age ... 10
- Data Audit Summary ... 12
- Considerations for Data Interpretation .. 12
- Dynamic Population ... 12
- Survival Bias ... 12
- Impact of Newborn Screening .. 13

SUMMARY OF THE CYSTIC FIBROSIS FOUNDATION PATIENT REGISTRY ... 14
- Summary of the Cystic Fibrosis Foundation Patient Registry, 1998–2013 14

DEMOGRAPHICS
- Number of Children and Adults with CF, 1986–2013 .. 16
- Age Distribution of the CF Population in 2013 ... 17
- Number of Individuals with CF Residing in Each State in 2013 17
- Characteristics of Adults with CF 18 Years and Older .. 18
 - Socioeconomic Characteristics of Adults 18 Years and Older with CF in 2013 18
 - Pregnancies and Pregnancy Rate in Women Ages 14 to 45 Years with CF, 1990–2013 .. 19
- Insurance Information .. 19
 - Insurance Coverage in 2013 .. 19
 - Additional Insurance Information in 2013 .. 19

DIAGNOSIS
- Number of New CF Diagnoses, 1990–2013 .. 20
- CF, CRMS and CFTR-related Disorder Diagnoses in 2013 21
- Birth Characteristics of Infants Born and Diagnosed with CF in 2013 21
- Presentation at Diagnosis ... 22
- Age at Diagnosis of Individuals with CF in 2013 .. 23
- Genotype Data .. 24
 - Prevalence of the 25 Most Common CFTR Mutations in 2013 24
 - Percent of Patients with No F508del Mutations by Year of Genotyping, 1993–2013 ... 25
 - Poly-T Tract Status of Patients with an R117H Mutation 25
- Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutation Classes .. 26
 - CFTR Mutations and Their Functional Effects .. 26
 - CFTR Mutation Class Comparisons .. 26
- Sweat Chloride Testing ... 27
 - Percent of Patients with a Sweat Chloride Reported by Year of Diagnosis, 1986–2013 ... 27
 - Sweat Chloride Value of F508del Homozygotes by Year of Diagnosis, 1986–2013 .. 27
 - Sweat Chloride Value of Patients Not Homozygous for F508del by Year of Diagnosis, 1986–2013 ... 27
 - Sweat Chloride Value (mmol/L), by Mutation Class .. 28
GUIDELINES: CARE, SCREENING AND PREVENTION

Patient Care Guidelines
Number of Clinic Visits, Respiratory Cultures and PFTs in 2013
Percent of Patients Meeting Guidelines for Visits, Cultures and PFTs, by Center
Percent of Patients Meeting Guidelines for Visits, Cultures and PFTs, 2003–2013
Percent of Patients Meeting Individual Guideline Criteria, by Center
Percent of Patients Evaluated by Multidisciplinary Care Team Members, by Center
Percent of Patients Evaluated by Multidisciplinary Care Team Members, 2003–2013
Percent of Patients with an IgE Measurement, by Center
Percent of Patient Receiving an Influenza Vaccine, 2006–2013
Percent of Patients with a DXA Scan, by Center
Percent of Patients Screened by or Monitored with Annual Labs, by Center
Percent of Patients Exposed to Tobacco Smoke, by Center
Tobacco Smoke Exposure by Age in 2013

Infant Care Guidelines
Time from Birth to First Recorded Sweat Test for Infants with CF Born in 2012 and Detected by Newborn Screening
Number of Encounters in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening
Number of Respiratory Cultures in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening
Percent of Patients Under 24 Months Meeting Guidelines, by Center

MICROBIOLOGY
Prevalence of Respiratory Microorganisms, 1988–2013
Prevalence of Respiratory Microorganisms by Age in 2013
Percent of Patients with Cultures Positive for Respiratory Microorganisms, by Center
Percent of Patients with Cultures Positive for P. aeruginosa, by Center
P. aeruginosa Infection by Age Cohort, 1989–2013
Burkholderia Species Confirmed at the B. cepacia Research Lab in 2013

Nontuberculous Mycobacteria (NTM)
Percent of Patients with a Mycobacterial Culture, by Center
Mycobacterial Species Isolated in 2013

NUTRITION
Median WHO Nutritional Outcomes for Patients Under 24 Months, by Center
Median WHO Nutritional Outcome Percentile for Patients Under 24 Months, 1986–2013
Median CDC Nutritional Outcomes for Patients 2 to 19 Years, by Center
CDC BMI Percentile for Patients 2 to 19 Years, by Mutation Class
Median CDC BMI Percentile by Age, 1986–2013
Median CDC Weight Percentile vs. Age by Birth Cohort
Median CDC Height Percentile vs. Age by Birth Cohort
Median BMI Value for Patients 20 Years and Older, by Center
BMI Value for Patients 20 Years and Older, by Mutation Class
Median BMI Value by Age, 1986–2013
Median Nutritional Outcome Percentiles for Patients 2 to 19 Years, 1986–2013
Median BMI Value for Patients 20 Years and Older, 1986–2013
Assessment and Treatment of Patients Not Meeting Nutrition Goals, by Center
TABLE OF CONTENTS continued

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Feeding</td>
<td>51</td>
</tr>
<tr>
<td>Form of Feeding by Age in 2013</td>
<td>51</td>
</tr>
<tr>
<td>Type of Formula Feeding by Age in 2013</td>
<td>51</td>
</tr>
<tr>
<td>Caloric Density of Feeding by Age in 2013</td>
<td>51</td>
</tr>
<tr>
<td>GASTROINTESTINAL (GI) THERAPIES</td>
<td>52</td>
</tr>
<tr>
<td>Percent of Patients Taking Pancreatic Enzymes, by Center</td>
<td>52</td>
</tr>
<tr>
<td>Percent of Patients Taking Enzymes in 2013 by Fecal Elastase Value</td>
<td>52</td>
</tr>
<tr>
<td>Lipase Units per Largest Meal for Infants Taking Pancreatic Enzymes, by Center</td>
<td>53</td>
</tr>
<tr>
<td>Lipase Units per Kilogram per Largest Meal for Patients Taking Pancreatic Enzymes, by Center</td>
<td>53</td>
</tr>
<tr>
<td>Percent of Patients Taking CF-Specific Vitamins, by Center</td>
<td>53</td>
</tr>
<tr>
<td>Acid Blockers Use, by Center</td>
<td>54</td>
</tr>
<tr>
<td>PULMONARY FUNCTION</td>
<td>55</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted by Age and Birth Cohort</td>
<td>55</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted by Age, 1986–2013</td>
<td>56</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted in 18-Year-Olds, 1987–2013</td>
<td>56</td>
</tr>
<tr>
<td>Center-Level Variation in FEV\textsubscript{1}, Outcomes</td>
<td>57</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted for Children, by Center</td>
<td>57</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted for Adults, by Center</td>
<td>57</td>
</tr>
<tr>
<td>Mutation Class Variation in FEV\textsubscript{1}, Outcomes</td>
<td>58</td>
</tr>
<tr>
<td>FEV\textsubscript{1} Percent Predicted for Children 6 to 17 Years, by Mutation Class</td>
<td>58</td>
</tr>
<tr>
<td>FEV\textsubscript{1} Percent Predicted for Adults 18 Years and Older, by Mutation Class</td>
<td>58</td>
</tr>
<tr>
<td>FEV\textsubscript{1} AND BMI OUTCOMES</td>
<td>59</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted vs. Median BMI Percentile for Children 6 to 19 Years in 2013</td>
<td>59</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted vs. Median BMI Value for Adults 20 to 40 Years in 2013</td>
<td>59</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted vs. Median BMI Percentile for Patients 6 to 17 Years — 2003 vs. 2013</td>
<td>60</td>
</tr>
<tr>
<td>Median FEV\textsubscript{1} Percent Predicted vs. Median BMI Value for Patients 18 to 30 Years — 2003 vs. 2013</td>
<td>60</td>
</tr>
<tr>
<td>PULMONARY EXACERBATIONS</td>
<td>61</td>
</tr>
<tr>
<td>Patients Treated with IV Antibiotics for a Pulmonary Exacerbation, 2003–2013</td>
<td>61</td>
</tr>
<tr>
<td>Pulmonary Exacerbations by Age Group in 2013</td>
<td>61</td>
</tr>
<tr>
<td>Percent of Patients with One or More Pulmonary Exacerbations, by Center</td>
<td>62</td>
</tr>
<tr>
<td>Median Exacerbation Treatment Duration in Days, by Center</td>
<td>62</td>
</tr>
<tr>
<td>Percent of Total Treatment Duration in Hospital, by Center</td>
<td>62</td>
</tr>
<tr>
<td>PULMONARY THERAPIES</td>
<td>63</td>
</tr>
<tr>
<td>Chronic Medication Use in Eligible Patients, 1995–2013</td>
<td>63</td>
</tr>
<tr>
<td>Medications Recommended for Chronic Use</td>
<td>64</td>
</tr>
<tr>
<td>Percent of Patients Prescribed Medications Recommended for Chronic Use, by Center</td>
<td>64</td>
</tr>
<tr>
<td>Medications with Insufficient Evidence to Recommend For or Against Chronic Use</td>
<td>65</td>
</tr>
<tr>
<td>Percent of Patients Prescribed Medications with Insufficient Evidence to Recommend For or Against Chronic Use, by Center</td>
<td>65</td>
</tr>
<tr>
<td>Chronic Oral Antibiotic Use in 2013</td>
<td>65</td>
</tr>
</tbody>
</table>
ABOUT THIS REPORT

Each year, we strive to improve the Annual Data Report in order to effectively convey the health status of individuals with cystic fibrosis (CF) and the care they receive at CF Foundation-accredited care centers. Last year, we made several substantial changes to the report. Historically, figures had primarily focused on showing center-level variation by providing the mean or median value of the outcome for each center. Beginning in the 2012 report, we also included tables and figures showing the data for all patients both cross-sectionally (using only data from the current year) and longitudinally (using data from multiple years). We have continued this approach in the 2013 report. Another change in the 2012 report was the addition of box-and-whisker plots to complement the histogram for displaying center-level variation. Since box-and-whisker plots provide more information about center-level variation, we have used them exclusively in this year’s report. Corresponding histograms will be included in the reports sent to individual care centers.

This year, enhancements to the report include the use of new population standards, for both nutritional and lung function predicted values. More detail on the rationale for and impact of these changes is provided below.

Report Inclusion and Exclusion Criteria

This report is based on the 2013 data entered into the CF Foundation Patient Registry. Figures are either cross-sectional (2013 data only) or longitudinal (data over several years). When possible, longitudinal graphs include data from 1986 through 2013. However, for some figures, data from different years are included. In some cases, it is because the variable was added to the Registry later than 1986. In others, the way the variable was collected was modified or enhanced at a point and we can only show trends since the modification or enhancement.

The report contains the data from individuals diagnosed with CF who have consented to participate in the Registry and who were seen in a CF center in 2013, or who were born, diagnosed or died in 2013. Data from individuals with a diagnosis of CFTR-related metabolic syndrome (CRMS) or CFTR-related disorders were excluded from all figures except the one figure specifically related to new diagnoses in 2013. Data from individuals who have received a lung transplant were excluded from the analyses of pulmonary function, pulmonary therapies, pulmonary complications, respiratory cultures and airway clearance data.

The included populations represented in the figures vary and are based on the eligibility criteria described in the title and/or footnotes for the figure.

Figures presenting data on center-level variation include only those centers reporting on at least 10 eligible patients. Exceptions to this are figures showing center-level variation for infants, patients with G551D mutations, CFRD patients and patients with an exacerbation; for these figures, centers reporting on five or more eligible patients are included.
Using Box-and-Whisker Plots to Show Center-Level and Population-Level Variation

Throughout the report, box-and-whisker plots are used in two ways — to show center-level and population-level variation. For example, the box-and-whisker plot below was created using data looking at the variation across centers of the median body mass index (BMI) percentile among individuals ages 2 to 19:

Median CDC Nutritional Outcomes for Patients 2 to 19 Years, by Center

<table>
<thead>
<tr>
<th>BMI Percentile for Patients 2 to 19 Years</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Minimum Value
B. Lower Quartile (0–25 Percent)
C. Median Value
D. Upper Quartile (75–100 Percent)
E. Maximum Value

Box-and-whisker plots provide the following information as noted by the letters in the figure above:

A. Minimum: The lowest median BMI percentile.
B. 0–25th percentile: 25 percent of observations fall below.
C. Median: 50 percent of observations fall below and above. Median values, shown by a red line, are preferable to mean values because they are not skewed by extreme values.
D. 75th–100th percentile: 75 percent of values fall below.
E. Maximum: The highest median BMI percentile.

When reading these plots, there are a few things to look for. First, the width of the box indicates the amount of variation in the outcome across centers — the wider the box the more variation. Second, the position of the box indicates the values where the majority of centers fall on that particular measure. In addition, the shading of the chart area indicates the age group examined. An advantage of the compactness of box-and-whisker plots is that we can display a group of plots together on the same page, allowing for a comparison in both the width and position of the boxes across related outcomes.

The box-and-whisker plot above displays center-level variation. For these plots we determine the median value for, or percentage of patients with, the outcome at each center. We then create the box-and-whisker plots using the summary numbers from each center. Box-and-whisker plots are also used to show the distribution of patient-level outcomes throughout the report. An example is the figure below, which also displays the variation in BMI percentile among individuals ages 2 to 19. In this case, each individual patient’s data is included in the box-and-whisker plot. As a result, and as can be seen by comparing the two figures, there is much wider variation in the population-level box-and-whisker plot as compared to the center-level.

CDC BMI Percentile for Patients 2 to 19 Years, by Mutation Class

<table>
<thead>
<tr>
<th>Mutation Class I-III N=9,694</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>5th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.8</td>
<td>7.6</td>
</tr>
</tbody>
</table>
Adoption of Global Lung Initiative (GLI) Equations for Lung Function Assessment

In 2012, the Global Lung Initiative (GLI) released lung function reference equations. These equations have a number of advantages over the Wang and Hankinson reference equations, which have been used since 2004. The GLI reference equations were developed using data obtained from healthy, non-smoking individuals around the world and span 3 to 95 years of age, thus eliminating the need to use separate pediatric and adult equations. As a result, FEV1 percent predicted based on the GLI reference equations will be used in this report as well as future reports. More information about the GLI can be found at http://lungfunction.org/files/GLI-2012_Reference_values.pdf.

To understand the impact of using GLI reference equations to calculate lung function, we used data from 85,105 encounters that occurred in 2013 among individuals with CF ages 6 to 29 years with valid spirometry test results entered into the Registry.

The figure below displays the mean FEV1 percent predicted for individuals ages 6 to 29 using the Wang and Hankinson reference equations and the GLI reference equations. The graph indicates that there is no clinically meaningful difference in the FEV1 percent predicted between the two reference equations for adults with CF. The patients most impacted by the change in reference equations are preteens, for whom the FEV1 percent predicted using the GLI equations is on average lower than that obtained from the Wang and Hankinson equations. Our findings are comparable to what has been reported in a study by Stanojevic et al., using data from individuals with CF in the United Kingdom.
The next two graphs show the median difference in FEV₁ percent predicted using the two different reference equations for each individual according to sex and the three main racial/ethnic groups in the Registry population (i.e., Hispanics, Non-Hispanic Whites and Non-Hispanic African Americans). Median differences greater than zero indicate that the Wang and Hankinson equations lead to higher estimates of FEV₁ percent predicted. Median differences less than zero indicate that the GLI equations lead to higher estimates of FEV₁ percent predicted. Again, this shows that Wang and Hankinson equations produced higher values for FEV₁ percent predicted during early adolescence for all racial/ethnic groups. Among adults, the group impacted the most by the changing the reference equations are Hispanic females, for whom GLI equations provide higher estimates of FEV₁ percent predicted.
Adoption of World Health Organization (WHO) Growth Standards for Infants Under 2 Years of Age

In the past, growth charts developed by the Centers for Disease Control and Prevention (CDC) were used to calculate height, weight, weight-for-length and BMI percentiles. For this year’s report, we continue to use the CDC growth charts for individuals ages 2 to 19, but have switched to World Health Organization (WHO) growth charts for individuals younger than age 2, as recommended by the CDC. The rationale for the CDC’s recommendation was based on both the methodology of the WHO project and its larger sample size and more complete data. The CDC growth charts are based on data of how children in the United States grow as they age. In contrast, WHO charts are based on the physiology of how infants and toddlers should grow in optimal situations. The WHO charts use the growth of breastfed infants as the norm.

To understand the impact of using WHO growth charts to calculate length, weight and weight-for-length percentiles, we used data from 9,790 encounters that occurred in 2013 among individuals under the age of 2. For each measure by age, we calculated the median value using CDC growth charts and WHO growth charts. For length, percentiles using WHO growth charts are consistently lower than those using CDC growth charts. For weight, percentiles are lower using WHO growth charts for the first 6 months of life, but higher after the 6 months. Weight-for-length percentiles are generally comparable during the first year of life but increasingly diverge in the second year of life, with WHO percentiles being consistently higher.
Data Audit Summary

The CF Foundation conducted an external audit of the data entered into the Registry in 2012. Twenty-eight centers of varying size and geographic location participated. The audit reviewed data for 1,606 patients and included 8,247 encounters and 1,471 care episodes. For key information, such as demographic, microbiological, treatment, and hospitalization variables, the data entered for a patient in the Registry were compared with the data in their electronic medical record (EMR) and evaluated for completeness and accuracy. Overall, the Registry contained 96.5 percent of the encounters and 89.7 percent of the hospitalizations that were recorded in EMRs. Among the key variables examined, the accuracy of the data in the Registry was over 95 percent for date of birth, sex and CFTR mutations. Microbiology was recorded accurately for 93.1 percent of cultures and medications were recorded accurately with some variability by type — over 95 percent for dornase alfa and azithromycin; over 90 percent for hypertonic saline and aztreonam; and over 85 percent for inhaled tobramycin.

Considerations for Data Interpretation

As the audit shows, the data in the Registry are complete and accurate, but some issues intrinsic to observational data need to be considered when interpreting Registry data.

Dynamic Population

Each year, the Registry report examines individuals who have consented to share their information in the Registry and who were seen in a CF care center or were born, diagnosed or died during that year. Each year, new children and adults with CF are added or return to the Registry, while others are no longer captured in the Registry due to death or loss to follow-up. These year-to-year changes impact the overall profile of the patient population in the Registry. To quantify the extent to which patients remain in the Registry, we selected a cohort of individuals with CF who were included in the Registry in 2008 and examined their status from 2008 to 2012. Of those in the 2008 cohort who were, to the best of our knowledge, alive in 2012, 91 percent were included in the Registry in 2012, and 87 percent of the cohort were included in the Registry for all five years. Among patients without five years of data, 36 percent returned to the Registry after a one-year gap, and an additional 9 percent returned after a two- or three-year gap.

Survival Bias

In previous reports, we have included figures based on cross-sectional data that show trends in different outcomes as individuals with CF age. To show improvements over time, we included charts showing FEV1 or BMI for different age groups in three different years; however, if one looks at data from different age groups for a single year, the comparison may be affected by what is referred to as survival bias. This bias is an artifact of cross-sectional data. Older patients currently in the Registry have survived and are likely healthier, and, therefore, are not representative of other patients who were in the same birth cohort at younger ages. The figure on the next page, which shows the proportion of patients by age group who are F508del homozygous, can be used to highlight the possible effect of survival bias. Typically, F508del homozygous patients have more severe disease. As patients age, the proportion of patients who are F508del homozygous decreases, since some patients with more severe disease do not survive to be included in the older age groups.
In an effort to prevent distorted interpretation of data due to survival bias, we have modified several figures in the report that had previously displayed outcomes by age to now display outcomes over time for different age groups. Survival bias needs to be kept in mind when reviewing the data in this report, particularly for the adult population. Figures that include all adults or all patients are less likely to be impacted by this bias since the “older” patients represent a relatively small proportion of the population.

Impact of Newborn Screening

Universal newborn screening for CF has been in place since 2010, with many states having introduced it earlier. Therefore, the clinical characteristics of very young patients included in the Registry in recent years are different than those of young patients included in the Registry previously. Prior to newborn screening, most infants were diagnosed by way of clinical symptoms. Now, asymptomatic and potentially healthier infants are being diagnosed with CF and are included in the Registry much earlier than they previously would have been. As a result, when examining cohorts of individuals with CF over time, we need to be aware of the changing case mix in the Registry as the proportion of individuals diagnosed through newborn screening increases.
Summary of the Cystic Fibrosis Foundation Patient Registry, 1998-2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CF patients (n)</td>
<td>21,066</td>
<td>21,488</td>
<td>25,408</td>
<td>27,904</td>
<td>28,103</td>
</tr>
<tr>
<td>Newly diagnosed patients (n)</td>
<td>992</td>
<td>1,044</td>
<td>1,161</td>
<td>1,055</td>
<td>959</td>
</tr>
<tr>
<td>Detected by newborn screening (%)</td>
<td>5.7</td>
<td>11.7</td>
<td>42.7</td>
<td>60.0</td>
<td>62.0</td>
</tr>
<tr>
<td>Mean age at diagnosis (years)</td>
<td>3.1</td>
<td>3.1</td>
<td>3.5</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Median age at diagnosis (months)</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>16.4</td>
<td>17.1</td>
<td>18.9</td>
<td>19.8</td>
<td>20.2</td>
</tr>
<tr>
<td>Median age (years)</td>
<td>14.2</td>
<td>15.1</td>
<td>16.9</td>
<td>17.7</td>
<td>17.9</td>
</tr>
<tr>
<td>Adults ≥ 18 years (%)</td>
<td>36.9</td>
<td>39.7</td>
<td>46.4</td>
<td>49.0</td>
<td>49.7</td>
</tr>
<tr>
<td>Race (not mutually exclusive)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (%)</td>
<td>95.6</td>
<td>95.3</td>
<td>94.6</td>
<td>94.0</td>
<td>93.9</td>
</tr>
<tr>
<td>African American (%)</td>
<td>3.7</td>
<td>3.8</td>
<td>4.2</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Other race (%)</td>
<td>1.3</td>
<td>1.8</td>
<td>2.4</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Hispanic (any race) (%)</td>
<td>4.9</td>
<td>5.8</td>
<td>6.5</td>
<td>7.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Males (%)</td>
<td>53.1</td>
<td>51.9</td>
<td>51.7</td>
<td>51.7</td>
<td>51.5</td>
</tr>
</tbody>
</table>

Mortality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total deaths (n)</td>
<td>388</td>
<td>355</td>
<td>434</td>
<td>425</td>
<td>414</td>
</tr>
<tr>
<td>Annual mortality rate (per 100)</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Predicted median survival (years)</td>
<td>32.2</td>
<td>33.4</td>
<td>36.6</td>
<td>41.3</td>
<td>40.7</td>
</tr>
<tr>
<td>95% confidence interval (years)</td>
<td>30.3-34.9</td>
<td>30.9-36.0</td>
<td>34.6-39.5</td>
<td>37.5-43.1</td>
<td>37.7-44.1</td>
</tr>
<tr>
<td>Median age at death (years)</td>
<td>25.8</td>
<td>26.0</td>
<td>26.6</td>
<td>27.4</td>
<td>27.5</td>
</tr>
</tbody>
</table>

GI/Nutrition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI percentile, patients 2 to 19 years (median)</td>
<td>39.1</td>
<td>44.1</td>
<td>49.1</td>
<td>52.6</td>
<td>53.3</td>
</tr>
<tr>
<td>Weight < 10th CDC percentile, patients 2 to 19 years (%)</td>
<td>26.3</td>
<td>21.4</td>
<td>16.6</td>
<td>13.7</td>
<td>13.3</td>
</tr>
<tr>
<td>Height < 5th CDC percentile, patients 2 to 19 years (%)</td>
<td>17.0</td>
<td>14.7</td>
<td>12.5</td>
<td>10.8</td>
<td>10.5</td>
</tr>
<tr>
<td>BMI patients 20 to 40 years (median)</td>
<td>20.7</td>
<td>21.4</td>
<td>21.9</td>
<td>22.2</td>
<td>22.2</td>
</tr>
<tr>
<td>Pancreatic enzyme supplements (% of patients)</td>
<td>96.2</td>
<td>95.3</td>
<td>90.9</td>
<td>87.5</td>
<td>87.2</td>
</tr>
<tr>
<td>Supplemental feeding - tube (%)</td>
<td>-</td>
<td>8.9</td>
<td>11.5</td>
<td>11.4</td>
<td>11.2</td>
</tr>
<tr>
<td>Supplemental feeding - oral only (%)</td>
<td>-</td>
<td>35.2</td>
<td>40.9</td>
<td>43.0</td>
<td>42.7</td>
</tr>
</tbody>
</table>

Pulmonary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC % predicted (mean)(^a)</td>
<td>81.5</td>
<td>83.4</td>
<td>86.2</td>
<td>87.3</td>
<td>87.4</td>
</tr>
<tr>
<td>FEV(_1) % predicted (mean)(^a)</td>
<td>70.1</td>
<td>72.9</td>
<td>74.8</td>
<td>75.9</td>
<td>76.1</td>
</tr>
</tbody>
</table>

Respiratory Microbiology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa (PA) (%)(^a)</td>
<td>60.7</td>
<td>57.3</td>
<td>52.9</td>
<td>49.6</td>
<td>48.7</td>
</tr>
<tr>
<td>Multidrug-resistant P. aeruginosa (MDR-PA) (%)(^c)</td>
<td>-</td>
<td>10.7</td>
<td>9.4</td>
<td>9.5</td>
<td>9.2</td>
</tr>
<tr>
<td>B. cepacia complex (%)</td>
<td>3.5</td>
<td>3.0</td>
<td>2.8</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>S. aureus (SA) (%)(^d)</td>
<td>44.8</td>
<td>59.3</td>
<td>66.0</td>
<td>69.0</td>
<td>69.3</td>
</tr>
<tr>
<td>Methicillin-sensitive S. aureus (MSSA) (%)</td>
<td>42.2</td>
<td>51.0</td>
<td>50.7</td>
<td>52.3</td>
<td>51.7</td>
</tr>
<tr>
<td>Methicillin-resistant S. aureus (MRSA) (%)</td>
<td>3.3</td>
<td>11.9</td>
<td>22.6</td>
<td>26.5</td>
<td>25.6</td>
</tr>
<tr>
<td>S. maltophilia (%)</td>
<td>5.5</td>
<td>11.2</td>
<td>12.7</td>
<td>13.4</td>
<td>13.7</td>
</tr>
<tr>
<td>Mycobacterial species (%)(^c)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.9</td>
<td>12.1</td>
</tr>
</tbody>
</table>

Table continues on the next page
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outpatient visits to CF centers reported per year (mean)</td>
<td>5.3</td>
<td>4.1</td>
<td>4.3</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Treated for a pulmonary exacerbation (%)</td>
<td>-</td>
<td>33.2</td>
<td>36.8</td>
<td>34.7</td>
<td>35.3</td>
</tr>
<tr>
<td>Number of pulmonary exacerbations per year (mean)$</td>
<td>-</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Number of days of treatment for pulmonary exacerbation per year (mean)$</td>
<td>-</td>
<td>29.2</td>
<td>32.9</td>
<td>29.5</td>
<td>31.0</td>
</tr>
<tr>
<td>Number of days of home IV treatment for pulmonary exacerbation per year (mean)$</td>
<td>-</td>
<td>12.3</td>
<td>14.0</td>
<td>10.9</td>
<td>11.9</td>
</tr>
<tr>
<td>Number of days of hospitalization for pulmonary exacerbation per year (mean)$</td>
<td>-</td>
<td>17.0</td>
<td>18.8</td>
<td>18.6</td>
<td>19.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulmonary TherapiesI</th>
<th>Dornase alfa (≥ 6 years) (%)</th>
<th>56.5</th>
<th>67.6</th>
<th>79.6</th>
<th>83.8</th>
<th>85.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled tobramycin (PA+ and ≥ 6 years) (%)I</td>
<td>52.6</td>
<td>67.3</td>
<td>70.0</td>
<td>65.7</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>Inhaled aztreonam (PA+ and ≥ 6 years) (%)</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>39.0</td>
<td>41.5</td>
<td></td>
</tr>
<tr>
<td>Azithromycin (PA+ and ≥ 6 years) (%)J</td>
<td>-</td>
<td>41.2</td>
<td>66.1</td>
<td>70.6</td>
<td>69.2</td>
<td></td>
</tr>
<tr>
<td>Hypertonic Saline (≥ 6 years) (%)</td>
<td>-</td>
<td>-</td>
<td>43.6</td>
<td>60.5</td>
<td>63.2</td>
<td></td>
</tr>
<tr>
<td>Ibuprofen (6–17 years with FEV1 ≥ 60 percent) (%)</td>
<td>11.9</td>
<td>6.6</td>
<td>4.6</td>
<td>3.6</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Ivacaftor (≥ 6 years with G551D mutation)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>77.7</td>
<td>86.8</td>
<td></td>
</tr>
<tr>
<td>Oxygen (%)K</td>
<td>-</td>
<td>-</td>
<td>11.4</td>
<td>10.8</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>Non-invasive ventilation (%)</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
<td>2.5</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transplants</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung (all procedures) (n)</td>
<td>133</td>
<td>152</td>
<td>166</td>
<td>213</td>
<td>246</td>
</tr>
<tr>
<td>Liver (n)</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Kidney (n)</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

A Pulmonary function data throughout this report reflect the use of GLI equationsI for both children and adults.

B Includes PA and multidrug-resistant PA, found in any culture during the year.

C Defined as resistant to all antibiotics tested in two or more classes.

D Includes MSSA and MRSA and reflects the prevalence of S. aureus among patients who had a bacterial culture during the year. The percentages for MSSA and MRSA individually are greater than the total S. aureus percentage because MSSA and MRSA are not mutually exclusive.

E Percent of patients with one or more mycobacterial species isolated out of those patients who had a mycobacterial culture during the year. This includes M. tuberculosis as well as nontuberculous mycobacteria (NTM) species.

F Defined as a period of treatment with intravenous (IV) antibiotics in the hospital and/or at home.

G Among those with one or more pulmonary exacerbations in the year.

H Percent of patients on therapy at any encounter in the year. All patients noted as intolerant or having an allergy to a specific therapy were excluded.

I Includes TOBI®, TOBI® Podhaler™ and Bethkis® in 2013 — in prior years, only TOBI® was available.

J Patients were considered eligible if they met the selection criteria used in the U.S. azithromycin trial.I

K Includes continuous, nocturnal or with exertion.
DEMOGRAPHICS

The Registry in its current form contains data on patients from 1986 to 2013. Over that time, substantial changes in the care people with CF receive have led to improved survival. This section displays the current and longitudinal distribution of demographic characteristics of individuals with CF in the Registry.

In 2013, there were 28,103 individuals with CF followed in the Registry. The number of adults with CF (individuals ages 18 and older) continues to increase, while the number of children has remained relatively stable over the past decade. In 2013, adults comprised 49.7 percent of the CF population, compared with 29.2 percent in 1986.

The decrease in the number of patients in 2003 is due to a delay in obtaining patient consents before the close of the calendar year at some care centers.
The median age of people currently in the Registry is 17.9 years. The range is from birth to 85 years. Despite gains in survival, the age distribution remains markedly skewed toward younger patients.

The map below displays the number of individuals with CF residing in each state.
Characteristics of Adults with CF 18 Years and Older

As a larger proportion of individuals with CF enter adulthood, it is encouraging to note that many of them are pursuing higher education and employment and are in committed relationships and having children of their own. About two-thirds of adults are either students or working.

Currently, about 35 percent of individuals in the Registry are college graduates, and this percentage has increased over the past 10 years.
The number of pregnancies among women with CF has steadily increased since the 1990s — in 2013, a total of 257 women with CF were pregnant. During this time, the overall pregnancy rate among women with CF has remained relatively constant due to the balance of additional pregnancies and additional women surviving to be included in the denominator. In contrast, the pregnancy rate in the general United States population is declining over time.7

Insurance Information

Insurance Coverage in 2013

<table>
<thead>
<tr>
<th></th>
<th>Under 18 Years</th>
<th>18 to 25 Years</th>
<th>26 Years and Older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (n)</td>
<td>13,742</td>
<td>5,552</td>
<td>7,990</td>
</tr>
<tr>
<td>Health insurance policy (e.g. private insurance) (%)</td>
<td>54.9</td>
<td>64.3</td>
<td>66.4</td>
</tr>
<tr>
<td>Medicare/Indian Health Services (%)</td>
<td>0.7</td>
<td>7.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Medicaid/state programs (%)</td>
<td>53.8</td>
<td>41.0</td>
<td>27.1</td>
</tr>
<tr>
<td>TriCare or other military health plan (%)</td>
<td>3.1</td>
<td>2.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Other (%)</td>
<td>1.3</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>No health insurance (%)</td>
<td>0.5</td>
<td>2.2</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Insurance coverage reflects a patient's coverage at any point during the year, thus, the data are not mutually exclusive (except for the "no health insurance" option).

Additional Insurance Information in 2013

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients who participated in a patient assistance program (%)</td>
<td>25.4</td>
</tr>
<tr>
<td>Patients 18 to 25 years covered under parents' insurance (%)</td>
<td>57.0</td>
</tr>
</tbody>
</table>

"Patient assistance program" refers to any program that provides free medication or co-pay assistance.
DIAGNOSIS

This section examines the characteristics of individuals diagnosed with CF, as well as trends over time for two key CF diagnostic tools: genotyping and the sweat test.

In 2013, 62.0 percent of new diagnoses were detected by newborn screening (NBS). There is evidence that patients diagnosed prior to the onset of symptoms have better lung function and nutritional outcomes later in life. Diagnosis in the newborn period also represents an important opportunity for care centers to partner with community physicians and families to ensure the best possible care and outcomes for infants with CF.

The number of new diagnoses for years prior to 2013 has been adjusted to include patients first reported to the Registry in the year after their diagnosis year. As in previous reports, we anticipate that the number of new diagnoses in 2013 will increase when the 2014 data are available.
According to CF Foundation guidelines, infants with a positive NBS but indeterminate sweat tests or less than two CF causing mutations should be diagnosed with CFTR-related metabolic syndrome (CRMS). CRMS was added to the Registry as a diagnostic option in 2010, with 719 patients with this diagnosis entered since then. In 2013, data were entered for 502 patients diagnosed with CRMS, 89 of whom were diagnosed during that year. Of those CRMS patients with a genotype entered (98.4%), 62.5 percent had one F508del mutation and 32.4 percent had one R117H mutation.

In addition to CRMS, patients can be identified as having a CFTR-related disorder. This option has also been available in the Registry since 2010. Patients with this diagnosis do not meet the diagnostic criteria for CF but are affected by CF-related conditions such as congenital bilateral absence of the vas deferens (CBAVD) and often have mutations in the CFTR gene. Collection and analysis of data from these individuals will provide new and important information for these patient populations.

In 2013, 651 infants were born and diagnosed with CF. Of those with a known gestational age at birth, 87.9 percent were born full term. This rate is comparable to that of the general U.S. population. The mean birth weight for full term infants with CF is approximately the same as that of the U.S. population. The gestational age of 112 infants born and diagnosed with CF in 2013 is not known.

CF, CRMS and CFTR-related Disorder Diagnoses in 2013

![Chart showing the distribution of diagnoses with CF, CRMS, and CFTR-related disorder.]

Birth Characteristics of Infants Born and Diagnosed with CF in 2013

![Chart showing the distribution of preterm vs. full term births.]

Preterm refers to infants born at a gestational age less than 37 weeks. Full term refers to infants born at a gestational age greater than or equal to 37 weeks.
Other than those presenting with meconium ileus, the great majority of those diagnosed under the age of 1 year are asymptomatic or minimally symptomatic at the time of diagnosis. Those diagnosed after age 1, however, often present with symptoms such as acute or persistent respiratory abnormalities.

Presentation at Diagnosis

<table>
<thead>
<tr>
<th>Presentation at Diagnosis</th>
<th>Diagnosed in 2013 (%)</th>
<th>Diagnosed in 2013 Age < 1 (%)</th>
<th>All Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA analysis</td>
<td>21.0</td>
<td>18.8</td>
<td>10.1</td>
</tr>
<tr>
<td>Family history</td>
<td>9.3</td>
<td>7.9</td>
<td>15.6</td>
</tr>
<tr>
<td>Newborn (neonatal) screening</td>
<td>62.0</td>
<td>83.0</td>
<td>19.1</td>
</tr>
<tr>
<td>Prenatal screening (CVS, amniocentesis)</td>
<td>4.1</td>
<td>5.2</td>
<td>2.3</td>
</tr>
<tr>
<td>Symptomatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meconium ileus/other intestinal obstruction</td>
<td>10.3</td>
<td>13.5</td>
<td>18.5</td>
</tr>
<tr>
<td>Acute or persistent respiratory abnormalities</td>
<td>18.4</td>
<td>63.6</td>
<td>40.5</td>
</tr>
<tr>
<td>CBAVD or infertility/GU abnormalities</td>
<td>2.1</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Digital clubbing</td>
<td>1.6</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Edema</td>
<td>0.1</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Electrolyte imbalance</td>
<td>0.4</td>
<td>0.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Failure to thrive/malnutrition</td>
<td>5.4</td>
<td>3.7</td>
<td>32.0</td>
</tr>
<tr>
<td>Liver problems</td>
<td>0.4</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Nasal polyps/sinus disease</td>
<td>3.2</td>
<td>0.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Rectal prolapse</td>
<td>0.5</td>
<td>0.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Steatorrhea/abnormal stools/malabsorption</td>
<td>5.6</td>
<td>4.1</td>
<td>24.9</td>
</tr>
<tr>
<td>Other</td>
<td>4.6</td>
<td>2.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Data are not mutually exclusive.

Among those diagnosed in 2013 under the age of 1 with meconium ileus or another intestinal obstruction, 23.2 percent had meconium ileus with perforation, 57.9 had meconium ileus without perforation and the remaining 18.9 percent had another neonatal bowel obstruction or it was unknown if perforation of the bowel had occurred.
Among patients in the Registry in 2013, 72.4 percent were diagnosed in the first year of life.
Genotype Data

With the introduction of genotype-specific cystic fibrosis transmembrane conductance (CFTR) modulators, genotyping all patients is increasingly important to CF research and clinical care. In 2013, 96.7 percent of patients (27,165) in the Registry had been genotyped. Of the more than 1,800 mutations that have been identified in the CFTR gene, the most common is the F508del mutation — 86.4 percent of patients in the Registry have at least one copy of this mutation. There is a substantial drop from F508del to the next most common mutations. No other mutation is currently found in more than 5 percent of the CF population.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Number of Patients</th>
<th>Percent of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>F508del</td>
<td>23,478</td>
<td>86.4</td>
</tr>
<tr>
<td>G542X</td>
<td>1,252</td>
<td>4.6</td>
</tr>
<tr>
<td>G551D</td>
<td>1,182</td>
<td>4.4</td>
</tr>
<tr>
<td>R117H</td>
<td>767</td>
<td>2.8</td>
</tr>
<tr>
<td>N1303K</td>
<td>672</td>
<td>2.5</td>
</tr>
<tr>
<td>W1282X</td>
<td>625</td>
<td>2.3</td>
</tr>
<tr>
<td>R553X</td>
<td>493</td>
<td>1.8</td>
</tr>
<tr>
<td>621+1G>T</td>
<td>437</td>
<td>1.6</td>
</tr>
<tr>
<td>1717-1G>A</td>
<td>425</td>
<td>1.6</td>
</tr>
<tr>
<td>3849+10kbC>T</td>
<td>411</td>
<td>1.5</td>
</tr>
<tr>
<td>2789+5G>A</td>
<td>369</td>
<td>1.4</td>
</tr>
<tr>
<td>3120+1G>A</td>
<td>267</td>
<td>1.0</td>
</tr>
<tr>
<td>I507del</td>
<td>220</td>
<td>0.8</td>
</tr>
<tr>
<td>D1152H</td>
<td>196</td>
<td>0.7</td>
</tr>
<tr>
<td>R1162X</td>
<td>193</td>
<td>0.7</td>
</tr>
<tr>
<td>3659delC</td>
<td>189</td>
<td>0.7</td>
</tr>
<tr>
<td>1898+1G>A</td>
<td>187</td>
<td>0.7</td>
</tr>
<tr>
<td>G85E</td>
<td>178</td>
<td>0.7</td>
</tr>
<tr>
<td>R560T</td>
<td>165</td>
<td>0.6</td>
</tr>
<tr>
<td>R347P</td>
<td>158</td>
<td>0.6</td>
</tr>
<tr>
<td>2184insA</td>
<td>151</td>
<td>0.6</td>
</tr>
<tr>
<td>R334W</td>
<td>145</td>
<td>0.5</td>
</tr>
<tr>
<td>A455E</td>
<td>142</td>
<td>0.5</td>
</tr>
<tr>
<td>Q493X</td>
<td>129</td>
<td>0.5</td>
</tr>
<tr>
<td>2184delA</td>
<td>116</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The number and percent of patients with a mutation includes patients with one or two copies of the mutation.

Among patients with genotyping information in the Registry, 1.1 percent of patients have one or more allele entered as “Unknown”.

homozygotes - 46.5% heterozygotes - 39.9%
Over time, the distribution of CFTR mutations among patients diagnosed with CF has changed, with the proportion of patients who do not have at least one F508del mutation increasing.

Of the less common mutations, there has been a consistent increase in the number of individuals with an R117H mutation. Among those genotyped in 1993, less than 1 percent of the population had an R117H mutation compared to almost 5 percent in 2013. There are many factors that could influence the shift in the distribution of mutations, such as the change in the ethnic distribution of the population or the introduction of newborn screening.

The clinical significance of the R117H mutation is highly dependent on the poly-T tract variant (5T, 7T or 9T) on the chromosome. Research indicates that a shorter poly-T tract is associated with higher disease penetrance. Unfortunately, the Registry does not have information on the poly-T repeat groups for 973 of the 1,163 patients with R117H ever followed in the Registry. We hope to reduce the amount of missing data for this important modifier of the R117H mutation phenotype.
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutation Classes

Researchers have categorized CF disease-causing mutations into five classes based on how the mutation affects the function or production of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.16–18

CFTR Mutations and Their Functional Effects

<table>
<thead>
<tr>
<th>Class</th>
<th>Impact on CFTR Protein</th>
<th>Examples of Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>No functional CFTR protein created</td>
<td>G542X, W1282X, R553X, 621+1G->T, 1717-1G->A</td>
</tr>
<tr>
<td>Class II</td>
<td>CFTR protein is created, but misfolded, keeping it from reaching the cell surface</td>
<td>F508del, N1303K, I507del, G85E, R560T</td>
</tr>
<tr>
<td>Class III</td>
<td>CFTR protein is created and reaches cell surface, but does not function properly</td>
<td>G551D, S549N, V520F, L1077P, G1244E</td>
</tr>
<tr>
<td>Class IV</td>
<td>The opening in the CFTR protein ion channel is faulty</td>
<td>R117H, D1152H, R347P, R334W, L206W</td>
</tr>
<tr>
<td>Class V</td>
<td>CFTR protein is created in insufficient quantities</td>
<td>3849+10kbC->T, 2789+5G->A, A455E, 3272-26A->G, 3120G->A</td>
</tr>
</tbody>
</table>

Mutation class comparisons have been included in this report. Mutation Classes I, II and III and Classes IV and V, respectively, are grouped together throughout this report. Patients included in the Class I-III group have two mutations in Classes I, II or III. These are considered more severe genotypes with little to no CFTR function. Patients with one or two mutations in Classes IV or V are considered to have milder genotypes with some residual CFTR function. The differences between these genotype classes lead to important clinical differences between the two groups.16,18

CFTR Mutation Class Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Classes I-III</th>
<th>Classes IV-V</th>
<th>Class Not Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients genotyped (%)</td>
<td>71.1</td>
<td>10.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Patients with a sweat test (%)</td>
<td>84.2</td>
<td>84.6</td>
<td>92.7</td>
</tr>
<tr>
<td>Age (median)</td>
<td>17.5</td>
<td>20.9</td>
<td>17.4</td>
</tr>
<tr>
<td>FEV1 for patients 6 to 17 years (median)</td>
<td>90.7</td>
<td>97.1</td>
<td>92.6</td>
</tr>
<tr>
<td>FEV1 for patients 18 to 30 years (median)</td>
<td>70.7</td>
<td>85.2</td>
<td>75.2</td>
</tr>
<tr>
<td>BMI percentile for patients 2 to 19 years (median)</td>
<td>51.8</td>
<td>64.9</td>
<td>56.0</td>
</tr>
<tr>
<td>BMI for patients 20 to 40 years (median)</td>
<td>21.8</td>
<td>24.2</td>
<td>22.8</td>
</tr>
<tr>
<td>Patients taking enzymes (%)</td>
<td>98.4</td>
<td>37.1</td>
<td>71.5</td>
</tr>
</tbody>
</table>

Class not identified, in this table as well as others throughout the report, refers to patients diagnosed with CF who were genotyped but the functional consequences of one or both of their mutations has not yet been determined.
Sweat chloride testing continues to be an important diagnostic test and is recommended for all patients regardless of genotype. In 2013, 85.6 percent of patients in the Registry had a sweat chloride test result recorded. We see a decreasing trend over time in the percent of patients with a sweat test entered into the Registry, which to the best of our knowledge is not the result of incomplete data entry. Individuals who are homozygous for F508del are substantially less likely to have a sweat chloride result entered in the Registry than those who are not F508del homozygotes.

Among those with a sweat chloride test, the median sweat chloride test results have remained consistent for patients who are F508del homozygotes with minimal variation. In contrast, there has been a steady decline in the median sweat chloride result among individuals who are not homozygous for F508del.
Patients with a severe genotype (Class I-III) have higher median sweat chloride values than those with milder genotypes (Class IV-V), indicative of residual CFTR function in many of the Class IV-V patients.

<table>
<thead>
<tr>
<th>Sweat Chloride Value (mmol/L), by Mutation Class</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>150</th>
<th>Median</th>
<th>5th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation Class I-III N=16,168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>78</td>
<td>128</td>
</tr>
<tr>
<td>Mutation Class IV-V N=2,407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>25</td>
<td>114</td>
</tr>
<tr>
<td>Genotyped but not identified in Mutation Classes I-III or IV-V N=4,623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
<td>38</td>
<td>124</td>
</tr>
<tr>
<td>All Patients N=23,198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>52</td>
<td>126</td>
</tr>
</tbody>
</table>
GUIDELINES: CARE, SCREENING AND PREVENTION

The CF Foundation has developed guidelines for routine care and screening for individuals with CF during infancy, childhood and adulthood. In accordance with care guidelines for patients over age 2,20,21 many centers report four office visits and two pulmonary function tests annually for the majority of their CF patients. However, adherence to the recommendation that centers perform quarterly respiratory cultures continues to be much lower and more variable across the care center network.22 Care centers report that respiratory therapists/physical therapists, dietitians/nutritionists, and social workers evaluate most patients at least once per year, as recommended by the CF Foundation.20

There is significant center-level variation in several key screening measures, including measurement of IgE for allergic bronchopulmonary aspergillosis (ABPA) and DXA scan for osteopenia/osteoporosis. The influenza vaccination rate is remarkable at 91.2 percent; however, the vaccination status of 16.2 percent of patients was reported as unknown. Smoking and secondhand smoke exposure remain challenging problems, particularly for young adults.

Patient Care Guidelines

Over time, the percentage of patients meeting the CF Foundation care guidelines has increased. Because patients should be able to perform reliable PFT tests at the age of 6 and older, we use the age of 7 for meeting guidelines criteria throughout this section to ensure individuals were eligible to perform a reliable PFT for the entire reporting year of 2013.

In 2003, 25.1 percent of children ages 7 to 17 years had four visits, four respiratory cultures and two PFTs, as recommended by the guidelines.21,22 In 2013, the percent of children receiving recommended care rose to 60.0 percent. Among adults 18 years of age and older, 16.7 percent had four visits, four respiratory cultures and two PFTs in 2003, while 33.8 percent met these guidelines in 2013.

Patients needed to have one or more clinic visits in 2013 to be included in the report.
Percent of Patients Meeting Guidelines for Visits, Cultures and PFTs, by Center

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Visits, Cultures and PFTs</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 2 to 6 Years with at Least 4 Visits, 1 Culture</td>
<td>75.0</td>
<td>34.8</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Patients 2 to 6 Years with at Least 4 Visits, 4 Cultures</td>
<td>63.9</td>
<td>0.0</td>
<td>96.6</td>
<td></td>
</tr>
<tr>
<td>Patients 7 to 17 Years with at Least 4 Visits, 1 Culture, 2 PFTs</td>
<td>69.9</td>
<td>20.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Patients 7 to 17 Years with at Least 4 Visits, 4 Cultures, 2 PFTs</td>
<td>57.7</td>
<td>0.0</td>
<td>89.4</td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older with at Least 4 Visits, 1 Culture, 2 PFTs</td>
<td>52.9</td>
<td>8.2</td>
<td>93.3</td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older with at Least 4 Visits, 4 Cultures, 2 PFTs</td>
<td>34.8</td>
<td>0.0</td>
<td>71.4</td>
<td></td>
</tr>
</tbody>
</table>

Percent of Patients Meeting Guidelines for Visits, Cultures and PFTs, 2003–2013

- Patients 7-17 Years (4 visits, 4 cultures, 2 PFTs)
- Patients ≥18 Years (4 visits, 4 cultures, 2 PFTs)
- Patients 7-17 Years (4 visits, 1 culture, 2 PFTs)
- Patients ≥18 Years (4 visits, 1 culture, 2 PFTs)
The infection prevention and control guidelines recommend that patients have at least quarterly respiratory cultures.22,23 Overall, 52.2 percent of patients had four or more respiratory cultures in 2013. Patients under the age of 18 were more likely to meet this recommendation.
The multidisciplinary care team plays an important role in CF care. CF care centers continue to increase the percentage of patients who see a dietitian/nutritionist, physical/respiratory therapist and social worker each year.

Percent of Patients Evaluated by Multidisciplinary Care Team Members, by Center

<table>
<thead>
<tr>
<th>Category</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients Under 18 Years Evaluated by a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Therapist/Physical Therapist</td>
<td></td>
<td></td>
<td>96.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older Evaluated by a</td>
<td></td>
<td></td>
<td>95.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Therapist/Physical Therapist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients Under 18 Years Evaluated by a</td>
<td></td>
<td></td>
<td>97.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietitian/Nutritionist</td>
<td></td>
<td></td>
<td>88.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older Evaluated by a</td>
<td></td>
<td></td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dietitian/Nutritionist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients Under 18 Years Evaluated by a</td>
<td></td>
<td></td>
<td>85.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Worker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older Evaluated by a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Worker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The CF Foundation Consensus Statement on ABPA recommends screening patients 6 years and older for ABPA by annual measurement of total serum IgE concentration.24

<table>
<thead>
<tr>
<th>Percent of Patients with an IgE Measurement, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Patients 6 to 17 Years with an IgE Measurement</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>88.2</td>
</tr>
<tr>
<td>Patients 18 Years and Older with an IgE Measurement</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>75.3</td>
</tr>
</tbody>
</table>

The CDC’s Advisory Committee on Immunization Practices recommends influenza vaccination for all CF patients ages 6 months and older.25 Patients with unknown vaccination status (16.2\%) and patients reported as “allergic/refused” (2.7\%) were excluded from the analyses.

<table>
<thead>
<tr>
<th>Percent of Patients Receiving an Influenza Vaccine, 2006–2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6 Months to 17 Years</td>
</tr>
<tr>
<td>18 Years and Older</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2006 2007 2008 2009 2010 2011 2012 2013</td>
</tr>
<tr>
<td>80 85 90 95 100</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
The CF Foundation Consensus Statement on Bone Health and Disease recommends screening all adults with a DXA scan and subsequent follow-up based on the findings of the scan.26 Note that patients may have had a DXA scan in a previous year.

<table>
<thead>
<tr>
<th>Percent of Patients Screened with a DXA Scan, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 18 Years and Older with DXA Scan</td>
</tr>
<tr>
<td>Performed between 2010–2013</td>
</tr>
<tr>
<td>0 50 100 Median Min Max</td>
</tr>
<tr>
<td>Patients 18 Years and Older with DXA Scan Performed between 2010–2013</td>
</tr>
</tbody>
</table>

Includes any DXA scans performed 2010–2013.

CF Foundation guidelines recommend annual measurement of fat-soluble vitamins to screen for vitamin deficiency.21,27 The CF Foundation Hepatobiliary Disease Consensus Group recommends a yearly panel of liver blood tests for all CF patients to screen for possible liver disease.28

<table>
<thead>
<tr>
<th>Percent of Patients Screened by or Monitored with Annual Labs, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with Fat-Soluble Vitamins Measured</td>
</tr>
<tr>
<td>0 50 100 Median Min Max</td>
</tr>
<tr>
<td>Patients with Fat-Soluble Vitamins Measured</td>
</tr>
</tbody>
</table>

| Patients with Liver Enzymes Measured |
| 0 50 100 Median Min Max |
| Patients with Liver Enzymes Measured | 82.1 31.4 100.0 |
In 2013, 23.5 percent of individuals with CF reported monthly or more frequent exposure to tobacco smoke, either secondhand or as a smoker themselves. Exposure to tobacco smoke is a substantial problem that causes disease and premature death in children and adults. Cigarette smoking prevalence is lower in the CF population than in the general U.S. population — only 4.6 percent of CF patients 18 years and older are smokers, compared with 18.1 percent in the general population in 2012. However, smoking and secondhand smoke exposure remain a significant concern, especially for infants and young adults. Smoke exposure was unknown for 36.0 percent of patients. These patients were excluded from analyses.

Percent of Patients Exposed to Tobacco Smoke, by Center

<table>
<thead>
<tr>
<th>Tobacco Smoke Exposure in Patients</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 18 Years</td>
<td></td>
<td></td>
<td></td>
<td>15.8</td>
<td>0.0</td>
<td>89.5</td>
</tr>
<tr>
<td>18 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>26.5</td>
<td>0.0</td>
<td>91.7</td>
</tr>
</tbody>
</table>

Includes any exposure to tobacco smoke reported in the Registry, i.e., exposure to secondhand smoke (daily, weekly, monthly) and patients who are smokers.

Tobacco Smoke Exposure by Age in 2013

- **Monthly Secondhand Smoke Exposure**
- **Weekly Secondhand Smoke Exposure**
- **Daily Secondhand Smoke Exposure**
- **Smoker**

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th><2</th>
<th>2 to 5</th>
<th>6 to 10</th>
<th>11 to 17</th>
<th>18 to 24</th>
<th>25 to 34</th>
<th>35 to 44</th>
<th>≥45</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Annual Data Report 2013 Cystic Fibrosis Foundation Patient Registry
Infant Care Guidelines

The CF Foundation guidelines for diagnosis of cystic fibrosis recommend that infants with a positive newborn screen for CF undergo a sweat test. It is important to make a definitive diagnosis as quickly as possible so families can be educated about the disease and treatment can begin.\(^8\)

The chart shows data for children born in 2012 because a full year of data is available for these patients. There were 116 infants with CF born in 2012 and detected by newborn screening not represented in this chart for whom a sweat test value has not been reported in the Registry.
The CF Foundation infant care guidelines recommend monthly care center visits during the first 6 months of life and every one to two months in the second 6 months.8 We would therefore expect patients to have around 9 visits in the first year of life, which is reflected in the chart below. There is marked variation in the number of encounters across the care center network among patients in the first year of life.

\textbf{Number of Encounters in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening (n=634)}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart1}
\caption{Number of Encounters in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening (n=634).}
\end{figure}

The chart shows data for children born in 2012 because a full year of data is available for these patients.

Respiratory cultures are being collected at the majority of clinic visits. Guidelines recommend cultures be performed at least quarterly during the first two years of life.8

\textbf{Number of Respiratory Cultures in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening (n=634)}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart2}
\caption{Number of Respiratory Cultures in the First Year of Life for Infants with CF Born in 2012 and Detected by Newborn Screening (n=634).}
\end{figure}

The chart shows data for children born in 2012 because a full year of data is available for these patients.
Fecal elastase testing, an objective measure of pancreatic function, is recommended in the infant care guidelines.8 There is marked variation in the use of this test across the care center network. The guidelines also recommend that infants begin salt supplements after diagnosis, and this is widely followed across the care center network. We observe substantial variation in the utilization of palivizumab across the care center network. Despite the current lack of compelling evidence supporting the efficacy of palivizumab in children with CF,31 the infant care guidelines recommend that its use be considered for infants with CF.8 Nearly all centers are prescribing the therapy for some of their infants.

<table>
<thead>
<tr>
<th>Percent of Patients Under 24 Months Meeting Guidelines, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>Fecal Elastase Value Reported</td>
</tr>
<tr>
<td>Salt Supplement Use</td>
</tr>
<tr>
<td>RSV Prophylaxis</td>
</tr>
</tbody>
</table>
MICROBIOLOGY

Pulmonary infections represent a serious and chronic problem for most individuals with CF. This section provides information on the trends in CF pathogens over time and by age groups. Updated infection prevention and control guidelines provide the current best practices for reducing exposure to CF pathogens in the health care setting and in everyday life.23

The prevalence of P. aeruginosa has been steadily decreasing and, as of 2003, is no longer the most common pathogen cultured in individuals with CF, while increases in the prevalence of S. aureus, both MRSA and MSSA, and S. maltophilia have been observed. The observed decrease in the prevalence of P. aeruginosa may in part reflect the widespread adoption of eradication strategies for initial acquisition of the organism. Some of the increase in S. aureus and MRSA may be due to improved microbiologic practices for the detection of Gram-positive organisms.
Rates of multidrug-resistant *P. aeruginosa* infection have increased substantially in older CF patients. These findings likely reflect cumulative exposure to antibiotics; the clinical significance is unclear. Multidrug resistance is defined as resistance to all antibiotics tested in two or more classes.

Variation in the prevalence of some microorganisms across the care center network exposes opportunities to improve adherence to CF Foundation infection prevention and control guidelines.32,33
Percent of Patients with Cultures Positive for Respiratory Microorganisms, by Center

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>0</td>
<td></td>
<td></td>
<td>46.3</td>
<td>11.1</td>
<td>75.0</td>
</tr>
<tr>
<td>Multidrug-Resistant P. aeruginosa (MDR-PA)</td>
<td>0</td>
<td>50</td>
<td></td>
<td>15.7</td>
<td>0.0</td>
<td>47.0</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0</td>
<td></td>
<td></td>
<td>69.9</td>
<td>16.7</td>
<td>87.0</td>
</tr>
<tr>
<td>Methicillin-Sensitive S. aureus (MSSA)</td>
<td>0</td>
<td>50</td>
<td></td>
<td>51.5</td>
<td>0.0</td>
<td>79.7</td>
</tr>
<tr>
<td>Methicillin-Resistant S. aureus (MRSA)</td>
<td>0</td>
<td></td>
<td></td>
<td>24.6</td>
<td>0.0</td>
<td>50.0</td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>0</td>
<td></td>
<td></td>
<td>13.5</td>
<td>0.0</td>
<td>30.6</td>
</tr>
<tr>
<td>B. cepacia complex</td>
<td>0</td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.0</td>
<td>18.2</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>0</td>
<td></td>
<td></td>
<td>11.0</td>
<td>0.0</td>
<td>70.2</td>
</tr>
<tr>
<td>A. xylosoxidans</td>
<td>0</td>
<td></td>
<td></td>
<td>5.5</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>0</td>
<td></td>
<td></td>
<td>11.9</td>
<td>0.0</td>
<td>36.3</td>
</tr>
<tr>
<td>Candida</td>
<td>0</td>
<td></td>
<td></td>
<td>7.8</td>
<td>0.0</td>
<td>71.8</td>
</tr>
</tbody>
</table>
A large percentage of adolescents and adults with CF become chronically infected with \textit{P. aeruginosa}, and there is less variation observed across centers. Among these patients, however, there is wide variation in the number of patients reported as having a mucoid phenotype. This may in part reflect differences in reporting the colony phenotype among microbiology labs.

The largest decrease over time is observed among individuals under the age of 18, 6 to 17 year olds in particular.
In 2013, 662 patients had a culture positive for *B. cepacia* complex: 94.3 percent of those isolates were confirmed at the CF Foundation *Burkholderia cepacia* Research Laboratory and Repository at the University of Michigan.

Burkholderia Species Confirmed at the *B. cepacia* Research Lab in 2013

Data are not mutually exclusive. Some patients have more than one species.
Note that *B. gladioli* *is not part of the* *B. cepacia* *complex.*
Nontuberculous Mycobacteria (NTM)

The prevalence of nontuberculous mycobacteria (NTM) infections is increasing in the general population.34 Since 2010, the Registry has collected more robust information on mycobacterial cultures and NTM infections.

Patients should be screened for nontuberculous mycobacteria before and 6 months after beginning azithromycin and annually thereafter.6 The data show wide center-level variation in this measure.

Of the 12,873 patients who had a mycobacterial culture in 2013, 1,543 (12.0%) had a mycobacterial species isolated one or more times. The relative proportion of M. abscessus isolated in 2013 is higher than that reported over a decade ago in the CF Foundation-supported multicenter prevalence study.35

Because patients may not have a mycobacterial culture each year, mycobacterial culture data from 2010 to 2013 were examined as well. The percent of patients with a mycobacterial culture at any time from 2010 to 2013, regardless of age or chronic macrolide use, is 59.3 percent. Of the 18,807 patients who were cultured, 3,069 had one or more mycobacterial species isolated (16.3%).
NUTRITION

Nutritional outcomes are a key measure of health in individuals with CF. Since there is no consistent nutritional measurement that can be used across the lifespan, this section is divided into three age groups: infants younger than 2, children ages 2 to 19 and adults 20 years and older. In addition to measures of nutritional status, data are displayed on pancreatic enzyme replacement therapy and other nutritional interventions.

Center-level data show significant variation in nutritional outcomes. Epidemiologic evidence suggests that nutritional status early in life is predictive of future pulmonary function. The data also show significant variation in the use of pancreatic enzymes, nutritional supplements, and acid blockers across the care center network.

The goal established by the CF Foundation nutrition guidelines is a weight-for-length at or above the 50th percentile by 2 years of age. Over 50 percent of centers are meeting this goal. Median weight and length percentiles are well below the 50th percentiles but improving over time.

Median WHO Nutritional Outcomes for Patients Under 24 Months, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight-for-Length Percentile for Patients Under 24 Months</td>
<td></td>
<td></td>
<td>61.9</td>
<td>23.1</td>
<td>92.1</td>
</tr>
<tr>
<td>Weight Percentile for Patients Under 24 Months</td>
<td></td>
<td></td>
<td>44.1</td>
<td>7.0</td>
<td>86.8</td>
</tr>
<tr>
<td>Length Percentile for Patients Under 24 Months</td>
<td></td>
<td></td>
<td>32.6</td>
<td>2.2</td>
<td>80.3</td>
</tr>
</tbody>
</table>

Median WHO Nutritional Outcome Percentiles for Patients Under 24 Months, 1986–2013

[Graph showing median values over time]
The goal established by the CF Foundation nutrition guidelines for children 2 to 19 years of age is a BMI at or above the 50th percentile. The median BMI percentile at more than half of the centers meet the guideline goal. Median weight and height percentiles are below the 50th percentile.

Children grouped in mutation Class IV-V have higher BMI percentiles than those in Class I-III, but there is substantial variation in the outcomes with significant overlap between the two classes.

Since 1986, there have been steady increases in median BMI percentile among 2 to 19-year-olds. BMI percentiles decrease with age, but as the result of steeper increases among adolescents ages 15 and 19 than children ages 5 and 10, there is less variation across ages in 2013 as compared to previous years.
Successive birth cohorts show improved weight and height percentiles, most notably in the youngest cohorts. This is most likely due to widespread implementation of newborn screening.
The goal established by the CF Foundation nutrition guidelines is a BMI at or above 22 for females and 23 for males age 20 and older.27

Adults in mutation Class IV-V have higher BMI values than adults in Class I-III.

The average BMI of young adults has improved markedly over the past two decades. Small numbers of patients at each age lead to fluctuation year to year, but overall, for each of the ages examined, the trend is one of increasing median BMI. Increases in BMI at older ages may in part relate to an increase in adult diagnoses with mutations associated with milder disease.
Significant progress has been made since the 1980s for both the pediatric and adult CF populations. Since 2008, the median BMI percentile of CF patients ages 2 to 19 years has met the CF Foundation goal of the 50th percentile. These analyses show dramatic improvements in nutritional status. The aging of the patient population and a greater number of late diagnoses with milder genotypes may also be contributing to this trend.
The CF Foundation nutrition guidelines recommend the use of nutritional supplements in addition to usual dietary intake for adults and children with weight deficits. 27 While there have been substantial improvements in nutritional outcomes over time, the median percent of patients who did not meet nutritional goals is 45.3 for children and 52.6 for adults with CF. Overall, patients who are not meeting nutritional goals as set out in the nutrition guidelines 27 have access to a dietitian and have had their oral intake assessed. Oral or tube supplemental feeding is used in the majority of centers, more frequently for children than adults.

<table>
<thead>
<tr>
<th>Assessment and Treatment of Patients Not Meeting Nutrition Goals, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 2 to 19 Years with BMI Below the 50th Percentile seen by a Dietitian/Nutritionist</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Oral Intake Assessed in Patients 2 to 19 Years with BMI Below the 50th Percentile</td>
</tr>
<tr>
<td>Oral Intake Assessed in Patients 20 Years and Older with BMI Less than 22 for Females or Less than 23 for Males seen by a Dietitian/Nutritionist</td>
</tr>
<tr>
<td>Oral or Tube* Supplemental Feeding in Patients 2 to 19 Years with BMI Below the 50th Percentile</td>
</tr>
<tr>
<td>Oral or Tube* Supplemental Feeding in Patients 20 Years and Older with BMI Less than 22 for Females or Less than 23 for Males</td>
</tr>
</tbody>
</table>

*Includes nasogastric (NG) tube, gastrostomy tube/button (G-tube), jejunal tube (J-tube) and total parenteral nutrition (TPN).
Infant Feeding

The majority of infants with CF receive formula feeding. Cow’s milk-based formula with the standard 20 cal/oz caloric density is the most common feeding used from birth to 3 months of age. More calorie-dense formulas are used after 3 months of age. CF Foundation infant care guidelines recommend human breast milk or standard infant formula as the initial form of feeding. Fortified human breast milk, calorie-dense formulas or complementary foods are recommended if the infant is failing to gain weight adequately.8

*Infants may be included in more than one age category. They may also be counted more than once within an age category if different answers were entered in separate encounters while within the same age category.
GASTROINTESTINAL (GI) THERAPIES

The CF Foundation infant care guidelines recommend that pancreatic enzyme replacement therapy (PERT) be started for all infants with two CFTR mutations associated with pancreatic insufficiency, a fecal elastase below 200μg/g of stool and/or signs of malabsorption.8

The greatest variation in enzyme use across the care center network occurs in infants.

Percent of Patients Taking Pancreatic Enzymes, by Center

<table>
<thead>
<tr>
<th>Patients Under 24 Months Taking Pancreatic Enzymes</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 2 to 6 Years Taking Pancreatic Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>86.4</td>
<td>28.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Patients 2 to 19 Years Taking Pancreatic Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>88.9</td>
<td>55.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Patients 20 Years and Older Taking Pancreatic Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>86.1</td>
<td>64.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

For infants with CF under age 2, the guidelines recommend assessment of pancreatic function status by fecal elastase.8 Data on fecal elastase test results have been entered into the Registry since 2010. Uptake of this test is increasing and half of patients under the age of 2 have a fecal elastase test result in the Registry. Among patients with fecal elastase testing results available, almost all patients with a fecal elastase value of less than 100 and the vast majority of patients with a fecal elastase value between 100 and 200 have been prescribed PERT. Approximately one–quarter of patients with fecal elastase values greater than 200 are prescribed pancreatic enzymes.

Percent of Patients Taking Enzymes in 2013 by Fecal Elastase Value

<table>
<thead>
<tr>
<th>Most Recent Fecal Elastase Value</th>
<th>Patients Under 24 Months</th>
<th>Patients Under 4 Years</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 100</td>
<td>98.6</td>
<td>98.5</td>
<td>96.9</td>
</tr>
<tr>
<td>Between 100 and 200</td>
<td>89.2</td>
<td>89.7</td>
<td>88.3</td>
</tr>
<tr>
<td>Greater than or equal to 200</td>
<td>24.2</td>
<td>26.2</td>
<td>28.2</td>
</tr>
<tr>
<td>Percent of patients with a fecal elastase value</td>
<td>51.0</td>
<td>37.4</td>
<td>9.9</td>
</tr>
</tbody>
</table>
The infant care guidelines recommend infants detected by newborn screening with two CFTR mutations associated with pancreatic insufficiency, or clinical or laboratory evidence of pancreatic insufficiency, be started on 2,000 to 5,000 lipase units per feeding (total lipase dose) with adjustments as the infant grows.

For patients 2 years of age and older, the recommended upper limit for enzyme dosing is 2,500 lipase units/kg/meal and a total of 10,000 lipase units/kg/day.

The CF Foundation guidelines recommend supplementation with fat-soluble vitamins due to the high prevalence of fat-soluble vitamin deficiency. The data indicate this recommendation is followed at the vast majority of centers, especially among younger patients.
Acid blockers are commonly prescribed in patients with CF to treat gastroesophageal reflux disease (GERD) and/or to increase the effectiveness of PERT. There is wide variability across centers, but the median percentage prescribed an acid blocker is approximately two-thirds. Proton pump inhibitors (PPIs) are prescribed more often than H₂ blockers with substantial variability across centers.

<table>
<thead>
<tr>
<th>Acid Blocker Use, by Center</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Acid Blocker* Use in Patients 2 to 19 Years Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>70.0</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Any Acid Blocker* Use in Patients 20 Years and Older Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>63.0</td>
<td>10.0</td>
<td>93.7</td>
</tr>
<tr>
<td>H₂ Blocker Use in Patients 2 to 19 Years Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>17.2</td>
<td>0.0</td>
<td>73.6</td>
</tr>
<tr>
<td>H₂ Blocker Use in Patients 20 Years and Older Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>11.3</td>
<td>0.0</td>
<td>36.7</td>
</tr>
<tr>
<td>PPI Use in Patients 2 to 19 Years Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>56.3</td>
<td>0.0</td>
<td>100.0</td>
</tr>
<tr>
<td>PPI Use in Patients 20 Years and Older Taking Enzymes</td>
<td></td>
<td></td>
<td></td>
<td>53.6</td>
<td>0.0</td>
<td>92.5</td>
</tr>
</tbody>
</table>

*H₂ blocker or proton pump inhibitor (PPI).
PULMONARY FUNCTION

Pulmonary function is a crucial clinical indicator of the health of individuals with CF. This section provides information on trends in pulmonary function over time and by age. Variations in pulmonary function across care centers and by mutation class are also examined. This report uses FEV1 percent predicted as the measurement to describe lung function; all measurements were calculated using the Global Lung Initiative (GLI) reference equations. More information about the effect of this change of reference equations can be found in the About This Report section on page 8.

Some noteworthy observations are that successive birth cohorts show improved pulmonary function, and analyses from 1993 to 2013 show improved FEV1 percent predicted across all ages. The majority of 18-year-olds, a typical age of transition to adult care, now have normal lung function or mild obstruction, defined as an FEV1 percent predicted greater than or equal to 70. Center-level data show significant variation in pulmonary outcomes, highlighting opportunities for improvement.

Median FEV1 Percent Predicted by Age and Birth Cohort

GLI reference equations were used to calculate FEV1 percent predicted.

FEV1 percent predicted is steadily improving and currently is above 90 percent predicted into early adolescence.
Median FEV\textsubscript{1} percent predicted has improved more than 10 percentage points for all ages over time; however, the lines are near parallel, suggesting that the rate of decline in adolescence remains the same.

The proportion of 18-year-olds in the normal/mild categories (FEV\textsubscript{1} \geq 70 percent predicted) has increased from 34.8 percent in 1987 to 71.9 percent in 2013, while the proportion in the severe category (FEV\textsubscript{1} < 40 percent predicted) has decreased from 31.6 percent to 7.2 percent.

GLI reference equations were used to calculate FEV\textsubscript{1} percent predicted.
Center-Level Variation in FEV₁ Outcomes

The national goal is an FEV₁ of 100 percent predicted for children under age 18. There is minimal variation across the care center network with regard to pediatric pulmonary outcomes. The data show an improvement from 10 years ago, when the median FEV₁ percent predicted by center for patients 6 to 17 years was 85.4 percent predicted.

<table>
<thead>
<tr>
<th>Median FEV₁ Percent Predicted for Children, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 6 to 12 Years</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 13 to 17 Years</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 6 to 17 Years</td>
</tr>
</tbody>
</table>

GLI reference equations were used to calculate FEV₁ percent predicted.

The national goal is an FEV₁ of 75 percent predicted for adults 18 and older. Median FEV₁ percent predicted for patients 18 years and older has improved substantially, from 59.9 percent predicted in 2003 to 66.8 percent predicted in 2013. There is more variability across adult centers than pediatric centers.

<table>
<thead>
<tr>
<th>Median FEV₁ Percent Predicted for Adults, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 18 to 29 Years</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 30 Years and Older</td>
</tr>
<tr>
<td>FEV₁ Percent Predicted for Patients 18 Years and Older</td>
</tr>
</tbody>
</table>

GLI reference equations were used to calculate FEV₁ percent predicted.
Mutation Class Variation in FEV₁ Outcomes

As the majority of patients fall into mutation Class I-III, the outcomes of this group drive national averages.

Among children and adolescents, there is more variability in outcomes among individuals with Class I-III mutations, with a substantial overlap in FEV₁ percent predicted between the two mutation class groups (I-III and IV-V) at all ages. Nevertheless, both children and adults in Class IV-V have higher lung function than those in Class I-III.

<table>
<thead>
<tr>
<th>Mutation Class</th>
<th>FEV₁ Percent Predicted for Children 6 to 17 Years</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>Median</th>
<th>5th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-III</td>
<td>N=6,224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.7</td>
<td>51.5</td>
<td>115.3</td>
</tr>
<tr>
<td>IV-V</td>
<td>N=637</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97.1</td>
<td>67.7</td>
<td>119.4</td>
</tr>
</tbody>
</table>

GLI reference equations were used to calculate FEV₁ percent predicted.

<table>
<thead>
<tr>
<th>Mutation Class</th>
<th>FEV₁ Percent Predicted for Adults 18 Years and Older</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>Median</th>
<th>5th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-III</td>
<td>N=8,277</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65.2</td>
<td>26.2</td>
<td>102.5</td>
</tr>
<tr>
<td>IV-V</td>
<td>N=1,428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73.9</td>
<td>31.5</td>
<td>109.5</td>
</tr>
</tbody>
</table>

GLI reference equations were used to calculate FEV₁ percent predicted.
FEV₁ AND BMI OUTCOMES

Pulmonary and nutritional outcomes are two main focuses of quality improvement work within the CF care network. The data show that pulmonary function and nutritional status increase proportionally for both pediatric and adult patients.

Established pulmonary and nutritional goals are: for children, FEV₁ percent predicted greater than or equal to 100 and BMI percentile meeting or exceeding the 50th percentile, and for adults, FEV₁ percent predicted greater than or equal to 75 and BMI greater than or equal to 22 for females and 23 for males.²⁷

GLI reference equations were used to calculate FEV₁ percent predicted.

Median FEV₁ Percent Predicted vs. Median BMI Percentile for Children 6 to 19 Years in 2013

![Graph showing median FEV₁ percent predicted vs. median BMI percentile for children 6 to 19 years in 2013.]

Goal: 50th percentile

Median FEV₁ Percent Predicted vs. Median BMI Value for Adults 20 to 40 Years in 2013

![Graph showing median FEV₁ percent predicted vs. median BMI value for adults 20 to 40 years in 2013.]

BMI Goals:
- 22 for Females
- 23 for Males

GLI reference equations were used to calculate FEV₁ percent predicted.
Each dot in the figure below represents values from an accredited care center or affiliate program. This figure shows the distribution of centers with regard to their median nutritional and pulmonary outcomes and the change in distribution between 2003 and 2013. Many more centers in 2013 are approaching the upper right quadrant than 10 years ago.

Median FEV₁ Percent Predicted vs. Median BMI Percentile for Patients 6 to 17 Years — 2003 vs. 2013

GLI reference equations were used to calculate FEV₁ percent predicted.

Median FEV₁ Percent Predicted vs. Median BMI Value for Patients 18 to 30 Years — 2003 vs. 2013

GLI reference equations were used to calculate FEV₁ percent predicted.
PULMONARY EXACERBATIONS

Pulmonary exacerbations, defined as treatment in the hospital and/or at home with intravenous (IV) antibiotics, are associated with morbidity, mortality and decreased quality of life, and they are a major driver of the cost of care. This section displays the trends in the rate of pulmonary exacerbations over time and by age group. Center variation with regard to exacerbation rates and treatment characteristics are also displayed.

Despite the notable improvements in pulmonary function and nutritional status over the past two decades, a significant proportion of patients are still treated with IV antibiotics for pulmonary exacerbations and there has been no reduction over time in the proportion of individuals with CF who experience an exacerbation.

![Graph showing trends in pulmonary exacerbations](image)

![Bar chart showing pulmonary exacerbations by age group in 2013](image)
In 2013, 73.2 percent of children and 56.0 percent of adults with CF — 64.7 percent of all patients — did not have a pulmonary exacerbation. Adults ages 18 to 30 were the most likely to experience at least one exacerbation in 2013, with over 10 percent experiencing three or more exacerbations.

While adults ages 18 and older were more likely to have an exacerbation, the percentage varied by center. The median length of treatment for both children and adults with CF was approximately two weeks. Center-level data show marked variation in the treatment of exacerbations, highlighting opportunities for further research and quality improvement.

<table>
<thead>
<tr>
<th>Percent of Patients with One or More Pulmonary Exacerbations, by Center</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients Under 18 Years with One or More Pulmonary Exacerbations</td>
<td></td>
<td></td>
<td></td>
<td>24.6</td>
<td>0.0</td>
<td>51.7</td>
</tr>
<tr>
<td>Patients 18 Years and Older with One or More Pulmonary Exacerbations</td>
<td></td>
<td></td>
<td></td>
<td>44.7</td>
<td>10.6</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Median Exacerbation Treatment Duration in Days, by Center</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Duration of IV Antibiotic Treatment for a Pulmonary Exacerbation in Patients Under 18 Years</td>
<td></td>
<td></td>
<td></td>
<td>13.5</td>
<td>1.3</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>Duration of Hospital Stay for Treatment of a Pulmonary Exacerbation in Patients Under 18 Years</td>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
<td>1.3</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Total Duration of IV Antibiotic Treatment for a Pulmonary Exacerbation in Patients 18 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>14.0</td>
<td>6.0</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td>Duration of Hospital Stay for Treatment of a Pulmonary Exacerbation in Patients 18 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>8.1</td>
<td>3.3</td>
<td>15.3</td>
<td></td>
</tr>
</tbody>
</table>

The data show more center-level variation in the percentage of IV treatment in the hospital versus in the home among adults with pulmonary exacerbations than children.

<table>
<thead>
<tr>
<th>Percent of Total Treatment Duration in Hospital, by Center</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Total Treatment Duration in Hospital in Patients Under 18 Years</td>
<td></td>
<td></td>
<td></td>
<td>81.2</td>
<td>30.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Percent of Total Treatment Duration in Hospital in Patients 18 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>64.1</td>
<td>6.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>
PULMONARY THERAPIES

Chronic pulmonary therapies are a major component of the treatment regimen for individuals with CF. This section provides data on the uptake and trends in usage of pulmonary medications recommended for chronic use by the CF Foundation pulmonary guidelines committee, as well as further information about the use of each of the recommended medications. Data are also provided on medications that are not recommended and for those which the committee did not find sufficient evidence to recommend for or against chronic use.38

Patients are included in the percent of eligible patients if they were prescribed the specific therapy at any encounter during the year. Among recommended medications, the use of dornase alfa, hypertonic saline, aztreonam and ivacaftor are increasing over time, while ibuprofen and tobramycin are decreasing.
Medications Recommended for Chronic Use

Recommended therapies are widely prescribed with the exception of ibuprofen. Hypertonic saline use continues to increase (from 24.4 percent in 2006 to 63.2 percent in 2013); however, its use is more variable across the care center network than the other widely used therapies. The use of inhaled aztreonam continues to increase. Ivacaftor is used by the majority of eligible patients with the G551D mutation.

<table>
<thead>
<tr>
<th>Medication Description</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dornase alfa Use in Patients 6 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>87.9</td>
<td>42.9</td>
<td>100.0</td>
</tr>
<tr>
<td>Inhaled Tobramycin Use in (P.\ aeruginosa) Positive Patients 6 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>64.0</td>
<td>25.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Azithromycin Use in Eligible (P.\ aeruginosa) Positive Patients 6 Years and Older*</td>
<td></td>
<td></td>
<td></td>
<td>69.0</td>
<td>17.6</td>
<td>98.1</td>
</tr>
<tr>
<td>Hypertonic Saline Use in Patients 6 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>63.2</td>
<td>0.0</td>
<td>98.4</td>
</tr>
<tr>
<td>High-dose Ibuprofen Use in Patients 6 to 17 Years with FEV1 Greater Than or Equal to 60 Percent Predicted</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>73.6</td>
</tr>
<tr>
<td>Inhaled Aztreonam Use in (P.\ aeruginosa) Positive Patients 6 Years and Older</td>
<td></td>
<td></td>
<td></td>
<td>40.9</td>
<td>9.1</td>
<td>76.2</td>
</tr>
<tr>
<td>Ivacaftor Use in Patients 6 Years and Older with a Copy of the G551D Mutation</td>
<td></td>
<td></td>
<td></td>
<td>87.5</td>
<td>18.2</td>
<td>100.0</td>
</tr>
</tbody>
</table>

*Patients were considered eligible if they met the selection criteria used in the U.S. azithromycin trial.⁶
Medications with Insufficient Evidence to Recommend For or Against Chronic Use

For the updated CF Foundation pulmonary guidelines, the guidelines committee determined that there was insufficient evidence to recommend for or against the chronic use of inhaled beta agonists, inhaled anticholinergics, leukotriene modifiers and inhaled colistin to improve lung function, reduce exacerbations or improve quality of life. Most of these medications are used infrequently.

Percent of Patients Prescribed Medications with Insufficient Evidence to Recommend For or Against Chronic Use, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled Beta Agonist Use in Patients 6 Years and Older</td>
<td></td>
<td></td>
<td>94.7</td>
<td>6.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Inhaled Anticholinergic Use in Patients 6 Years and Older</td>
<td></td>
<td></td>
<td>5.2</td>
<td>0.0</td>
<td>34.1</td>
</tr>
<tr>
<td>Leukotriene Modifier Use in Patients 6 Years and Older</td>
<td></td>
<td></td>
<td>18.9</td>
<td>0.0</td>
<td>65.8</td>
</tr>
<tr>
<td>Inhaled Colistin Use in Patients 6 Years and Older with P. aeruginosa</td>
<td></td>
<td></td>
<td>9.5</td>
<td>0.0</td>
<td>35.3</td>
</tr>
</tbody>
</table>

In 2013, 85.9 percent of patients did not use any chronic oral antibiotics.
Medications Not Recommended for Chronic Use

Inhaled steroids continue to be commonly prescribed despite the recommendation against their chronic use in the absence of asthma or ABPA.

<table>
<thead>
<tr>
<th>Medications Not Recommended for Chronic Use, by Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients Prescribed Medications Not Recommended for Chronic Use, by Center</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Inhaled Steroid Use in Patients 6 Years and Older Without Asthma or ABPA</td>
</tr>
</tbody>
</table>

Medication Use in Young Children

Guidelines for chronic pulmonary medications currently only exist for patients ages 6 years and older; however, guidelines are in development for children 2 to 5 years of age. The chart below shows the use of these medications among patients younger than 6.

<table>
<thead>
<tr>
<th>Medication Use in Patients Under 6 Years in 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients (n)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Dornase alfa</td>
</tr>
<tr>
<td>Hypertonic saline</td>
</tr>
<tr>
<td>Inhaled bronchodilators</td>
</tr>
<tr>
<td>Inhaled corticosteroids</td>
</tr>
<tr>
<td>Inhaled tobramycin</td>
</tr>
<tr>
<td>Azithromycin</td>
</tr>
<tr>
<td>Inhaled aztreonam</td>
</tr>
<tr>
<td>Inhaled aztreonam</td>
</tr>
</tbody>
</table>

Most patients under the age of 6 years are prescribed inhaled bronchodilators. Dornase alfa is prescribed in 40.5 percent of patients younger than 3 years of age and over two-thirds of patients ages 3 to 5 years.
Airway Clearance Techniques

The CF Foundation pulmonary guidelines recommend airway clearance for all patients. High-frequency chest wall oscillation vest is the most widely used airway clearance technique beyond the infant years.

The CF Foundation pulmonary guidelines recommend aerobic exercise as an adjunct therapy for airway clearance and for its additional benefits to overall health.

Percent of Patients Using Exercise as an Airway Clearance Technique, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise as a Primary or Secondary Airway Clearance Technique</td>
<td></td>
<td></td>
<td></td>
<td>40.7</td>
<td>0.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
COMPLICATIONS

Management of complications secondary to CF is important for maintaining an individual's health and quality of life. Complications of CF can impact many different organ systems and can be the direct result of the malfunction of the CFTR protein or a downstream effect.

Cystic fibrosis-related diabetes (CFRD) remains an important and highly prevalent complication that greatly impacts a person's quality of life and is associated with increased morbidity and mortality. Bone disease and depression are two other complications of CF more common among older adults.

<table>
<thead>
<tr>
<th>Complications of CF in 2013</th>
<th>< 18</th>
<th>≥ 18</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>14,128</td>
<td>13,975</td>
<td>28,103</td>
</tr>
<tr>
<td>Percent with no complications</td>
<td>27.6</td>
<td>6.6</td>
<td>17.1</td>
</tr>
<tr>
<td>Percent with complications not reported</td>
<td>2.6</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Cystic Fibrosis-Related Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 18 (%)</td>
<td>6.5</td>
<td>34.3</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Hepatobiliary

Gall stones	0.2	0.9	0.5
Gall stones, requiring surgery/procedure	0.2	1.3	0.7
Liver disease, cirrhosis	2.0	2.9	2.5
Liver disease, non-cirrhosis	4.9	5.1	5.0
Hepatic steatosis	0.3	0.5	0.4
Liver disease, other	2.8	3.1	3.0

Bone/Joints

Arthritis/arthropathy	0.5	5.7	3.1
Bone fracture	0.2	0.4	0.3
Osteopenia	1.8	20.9	11.2
Osteoporosis	0.7	9.4	5.0

Pulmonary

Allergic bronchopulmonary aspergillosis (ABPA)	3.2	7.0	5.0
Asthma	25.2	27.5	26.3
Hemoptysis, massive	0.3	2.2	1.2
Pneumothorax requiring chest tube	0.1	0.8	0.5

GI

Distal intestinal obstruction syndrome (DIOS)	4.1	6.1	5.1
Gastroesophageal reflux disease (GERD)	28.1	34.5	31.3
GI bleed requiring hospitalization (non-variceal)	0.0	0.1	0.1
Pancreatitis	0.6	2.8	1.7
Peptic ulcer disease	0.1	0.3	0.2
Rectal prolapse	0.9	0.3	0.6

Other Complications

Anxiety disorder	1.6	11.1	6.2
Cancer confirmed by histology	0.0	0.8	0.4
Depression	2.3	22.6	12.3
Hearing loss	0.8	2.7	1.7
Hypertension	0.4	7.8	4.0
Kidney stones	0.2	2.7	1.5
Nasal polyps requiring surgery	3.7	5.2	4.4
Renal failure requiring dialysis	0.0	0.4	0.2
Sinus disease	17.4	44.3	30.7

A Patients who did not have a complications case report form completed were considered to not have any complications, as in previous years.
B See table on page 77 for secondary complications.
C See table on the next page for secondary complications.
D Cause other than CFRD.
The table below highlights the prevalence of the clinical manifestations of portal hypertension among individuals with cirrhosis.

Complications of Liver Disease, Cirrhosis in 2013 (n=678)

<table>
<thead>
<tr>
<th>Complication</th>
<th>All (n)</th>
<th>All (%)</th>
<th>< 18 (%)</th>
<th>≥ 18 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esophageal varices</td>
<td>148</td>
<td>21.8</td>
<td>20.9</td>
<td>22.5</td>
</tr>
<tr>
<td>Gastric varices</td>
<td>30</td>
<td>4.4</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>GI bleed related to varices</td>
<td>18</td>
<td>2.7</td>
<td>2.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>224</td>
<td>33.0</td>
<td>39.6</td>
<td>28.5</td>
</tr>
<tr>
<td>Hypersplenism</td>
<td>79</td>
<td>11.7</td>
<td>12.6</td>
<td>11.0</td>
</tr>
<tr>
<td>Ascites</td>
<td>48</td>
<td>7.1</td>
<td>5.4</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Prevalence of Common Complications by Age in 2013

![Prevalence of Common Complications by Age in 2013](image-url)
The increased prevalence of depression and bone disease likely relates to increased awareness of these important complications and more widespread screening. Aging of the population may also be a contributing factor.

Between 2003 and 2013, the overall percentage of patients reporting massive hemoptysis remained low, though increasing in patients age 18 and older.
Differences in the prevalence of complications may reflect differences in the case mix across centers. However, for some complications, particularly CFRD, bone disease, and anxiety and depression, marked center-level variation may reflect differences in screening for these treatable complications.

Percent of Patients with CFRD, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 10 to 17 Years with CFRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients 18 Years and Older with CFRD</td>
<td></td>
<td></td>
<td></td>
<td>11.9</td>
<td>0.0</td>
<td>37.5</td>
</tr>
</tbody>
</table>

Percent of Patients with Bone Disease, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 18 Years and Older with Osteopenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Patients 18 Years and Older with Osteoporosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Percent of Patients with CF-Related Complications, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with Allergic Bronchopulmonary Aspergillosis (ABPA)</td>
<td></td>
<td></td>
<td></td>
<td>3.7</td>
<td>0.0</td>
<td>16.7</td>
</tr>
<tr>
<td>Patients with Depression or Anxiety Disorder</td>
<td></td>
<td></td>
<td></td>
<td>12.0</td>
<td>0.0</td>
<td>44.2</td>
</tr>
<tr>
<td>Patients with Distal Intestinal Obstruction Syndrome (DIOS)</td>
<td></td>
<td></td>
<td></td>
<td>3.5</td>
<td>0.0</td>
<td>19.1</td>
</tr>
</tbody>
</table>
This table shows complications by mutation class for selected complications. CFRD, liver disease and distal intestinal obstruction syndrome (DIOS) are more prevalent among individuals in mutation Class I-III. In contrast, pancreatitis is more common among patients in mutation Class IV-V. It is interesting to note that the prevalence of anxiety and depression does not differ depending on mutation class.

<table>
<thead>
<tr>
<th>Complications of CF in 2013, by Mutation Class</th>
<th>Mutation Class I-III</th>
<th>Mutation Class IV-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>18,128</td>
<td>2,734</td>
</tr>
<tr>
<td>Percent with no complications</td>
<td>15.3</td>
<td>24.4</td>
</tr>
<tr>
<td>Percent with complications not reported(a)</td>
<td>2.5</td>
<td>4.9</td>
</tr>
<tr>
<td>Cystic Fibrosis-Related Diabetes(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic fibrosis-related diabetes (CFRD)(b)</td>
<td>23.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Hepatobiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver disease, cirrhosis(c)</td>
<td>2.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Liver disease, non-cirrhosis</td>
<td>6.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Liver disease, other</td>
<td>3.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Bone/joints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteopenia</td>
<td>11.7</td>
<td>10.4</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>5.0</td>
<td>5.3</td>
</tr>
<tr>
<td>Pulmonary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic bronchopulmonary aspergillosis (ABPA)</td>
<td>5.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Asthma</td>
<td>33.4</td>
<td>23.5</td>
</tr>
<tr>
<td>Hemothysis, massive</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Pneumothorax requiring chest tube</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>GI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distal intestinal obstruction syndrome (DIOS)</td>
<td>5.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Gastroesophageal reflux disease (GERD)</td>
<td>33.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Pancreatitis</td>
<td>0.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Rectal prolapse</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Other Complications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety disorder</td>
<td>6.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Cancer confirmed by histology</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Depression</td>
<td>12.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Hypertension</td>
<td>3.8</td>
<td>5.3</td>
</tr>
<tr>
<td>Kidney Stones</td>
<td>1.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Nasal polyps requiring surgery</td>
<td>4.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Renal failure requiring dialysis(d)</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Sinus disease</td>
<td>30.9</td>
<td>31.8</td>
</tr>
</tbody>
</table>

\(a\) Patients who did not have a complications case report form completed were considered to not have any complications, as in previous years.

\(b\) See table on page 77 for secondary complications.

\(c\) See table on page 69 for secondary complications.

\(d\) Cause other than CFRD.
The increased prevalence of pancreatitis over time may reflect an increase in CF diagnoses in adolescents and adults with Class IV and V mutations.

The increased prevalence of CFRD over time may reflect aging of the patient population and/or more systematic screening for this complication.
Cystic Fibrosis-Related Diabetes (CFRD)

CFRD is associated with weight loss, lung function decline and increased mortality. Early diagnosis and treatment may minimize the impact of CFRD. The CF Foundation CFRD guidelines recommend screening all patients annually, starting by the age of 10, with an oral glucose tolerance test (OGTT).

CFRD screening using blood glucose tests are routinely performed at the vast majority of centers. However, there is less utilization of the recommended OGTT test, with substantial variation across centers. Among adult centers, 80.0 percent of centers report performing this test in less than half of their patients.

Percent of Non-CFRD Patients with Glucose Testing, by Center

<table>
<thead>
<tr>
<th>Patients 10 to 17 Years with any Glucose Measurements</th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients</td>
<td>92.6</td>
<td>35.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients 18 Years and Older with any Glucose Measurements</th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients</td>
<td>82.7</td>
<td>44.4</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients 10 to 17 Years with OGTT Screening</th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients</td>
<td>47.7</td>
<td>0.0</td>
<td>94.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patients 18 Years and Older with OGTT Screening</th>
<th>0</th>
<th>50</th>
<th>100 Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Patients</td>
<td>27.5</td>
<td>0.0</td>
<td>91.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Random and Fasting Blood Glucose and OGTT Screening in Non-CFRD Patients, 1998–2013

Rates of OGTT screening for CFRD have increased since the publication of the CF Foundation CFRD guidelines in 2010.
The CFRD guidelines recommend quarterly hemoglobin A1c (HgbA1c) measurements for patients with CFRD. Center-level variation in the percentage of CFRD patients with one or more hemoglobin A1c measurement during the year indicate that a majority of centers are routinely testing their patients.

Percent of Patients with CFRD with at Least One Hemoglobin A1c Measurement, by Center

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients 10 to 17 Years with At Least One Hemoglobin A1c Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90.0</td>
<td>18.2</td>
</tr>
<tr>
<td>Patients 18 Years and Older with At Least One Hemoglobin A1c Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The goal established by the CF Foundation CFRD guidelines is a hemoglobin A1c less than 7.0 percent for individuals with CFRD.

Median Hemoglobin A1c of Patients with CFRD, by Center

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin A1c of Patients 10 to 17 Years with CFRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Hemoglobin A1c of Patients 18 Years and Older with CFRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Hemoglobin A1c of All Patients with CFRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.6</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Adults who have been diagnosed with CFRD have a median BMI lower than that of patients who have not been diagnosed with CFRD, and this difference has persisted over time, even as median BMI has increased. Lung function is also lower among patients with CFRD and the difference between the two groups has increased over time.

Median BMI Value for Patients 20 Years and Older by CFRD Status, 1986–2013

![Graph showing the change in median BMI value for patients 20 years and older from 1986 to 2013, with a comparison between CFRD and Non-CFRD patients.](image)

Median FEV₁ Percent Predicted for Patients 18 Years and Older by CFRD Status, 1986–2013

![Graph showing the change in median FEV₁ percent predicted from 1986 to 2013, with a comparison between CFRD and Non-CFRD patients.](image)

GLI reference equations were used to calculate FEV₁ percent predicted.
Rates of secondary complications of CFRD, including retinopathy, microalbuminuria, kidney disease and neuropathy, remain low. As the CF population continues to age, adult care providers should continue to screen patients for these complications as recommended by the CFRD guidelines.

<table>
<thead>
<tr>
<th>Complications of CFRD in 2013 (n=5,542)</th>
<th>All (n)</th>
<th>All (%)</th>
<th>< 18 (%)</th>
<th>≥ 18 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinopathy</td>
<td>45</td>
<td>0.8</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>90</td>
<td>1.7</td>
<td>0.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Chronic renal insufficiency</td>
<td>266</td>
<td>5.0</td>
<td>0.7</td>
<td>5.8</td>
</tr>
<tr>
<td>Chronic renal failure requiring dialysis</td>
<td>18</td>
<td>0.3</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>60</td>
<td>1.1</td>
<td>0.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Any episodes of severe hypoglycemia</td>
<td>194</td>
<td>4.8</td>
<td>2.1</td>
<td>5.4</td>
</tr>
</tbody>
</table>
TRANSPLANTATION

Lung transplantation remains an option for some patients with severe disease. The annual number of lung transplant procedures for CF fluctuates yearly, with an overall upward trend. The bilateral lung transplant is by far the most common procedure.

There are 1,426 individuals followed in the Registry in 2013 who have received a lung, kidney, heart or liver transplant.

<table>
<thead>
<tr>
<th>Transplant Status of Patients in 2013</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted, on waiting list</td>
<td>221</td>
</tr>
<tr>
<td>Evaluated, final decision pending</td>
<td>328</td>
</tr>
<tr>
<td>Evaluated, rejected</td>
<td>83</td>
</tr>
<tr>
<td>Received transplant this year</td>
<td>251</td>
</tr>
<tr>
<td>Received transplant in a prior year</td>
<td>1,175</td>
</tr>
</tbody>
</table>

Transplant status reflects all transplants, not just lung transplants.

There are 1,291 patients who have had a lung transplant followed in the Registry in 2013, including the 245 patients who received a lung transplant in 2013.
There is concern that the Registry may have incomplete information on post-transplant patients if they receive all of their care at a transplant center. The figure below shows that data were not entered into the Registry in 2013 for a sizable proportion of lung transplant recipients. This may impact our survival calculations.
SURVIVAL

The median predicted survival age in 2013 is 40.7 years (95 percent confidence interval: 37.7–44.1 years). The median predicted survival age is generated by life table analysis and represents the age to which half of the current Registry population would be expected to survive, given their ages in 2013 and assuming that mortality rates do not change.

The graph below shows the gains in median predicted survival from 1986 to 2013. By using five-year increments, the year-to-year variability decreases and the confidence bounds narrow. The median predicted survival age for 2009 to 2013 is 38.4 years (95 percent confidence interval: 37.1–39.8 years).

The primary causes of death for patients with CF are respiratory/cardiorespiratory and transplant-related.

<table>
<thead>
<tr>
<th>Primary Cause of Death in 2013</th>
<th>Number of Patients</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory/cardiorespiratory</td>
<td>282</td>
<td>68.1</td>
</tr>
<tr>
<td>Transplant related: other</td>
<td>48</td>
<td>11.6</td>
</tr>
<tr>
<td>Other</td>
<td>35</td>
<td>8.5</td>
</tr>
<tr>
<td>Transplant related: bronchiolitis obliterans</td>
<td>20</td>
<td>4.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>14</td>
<td>3.4</td>
</tr>
<tr>
<td>Liver disease/liver failure</td>
<td>12</td>
<td>2.9</td>
</tr>
<tr>
<td>Suicide</td>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>Trauma</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The table below displays the characteristics of the patients who died in 2013. Looking at the distribution, more women with CF died than men and a substantial number of those who died were diagnosed with CFRD or had undergone a lung transplant.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Female (%)</th>
<th>F508del Homozygous (%)</th>
<th>CFRD (%)</th>
<th>Lung Transplant Recipient (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53.1</td>
<td>51.2</td>
<td>65.2</td>
<td>22.0</td>
</tr>
</tbody>
</table>

The median predicted survival age is calculated using the entire 2013 Registry population. In contrast, the median age at death is calculated from the deaths reported in 2013. The median age at death for the 414 deaths reported in 2013 is 27.5 years.
REFERENCES

DEMOGRAPHIC DATA

Demographics
- CFF Patient Number: ______________________
- Last Name: ______________________________
- Last Name at Birth (if different): ______________
- First Name: _____________________________
- Middle Name: ____________________________
- Last 4 digits of SSN: _______________________
- Date of Birth: (MM/DD/YYYY)
- State of Birth: ____________________________
- Gender: ___ Male ___ Female
- Current Zip: ______________________________
- Is patient residing in the US permanently? ___ Yes ___ No
- Emergency Phone: ________________________
- Email: ___________________________________

Race/Ethnicity Information
- Race: ___ White ___ Black or African American ___ American Indian or Alaska Native ___ Asian ___ Native Hawaiian or Other Pacific Islander ___ Some other race ___ Two or more races
 - If two or more races, specify Mixed Race components:
 - White
 - Black or African American
 - American Indian or Alaska Native
 - Asian
 - Native Hawaiian or Other Pacific Islander
- Is the Patient of Hispanic Origin? ___ Yes ___ No ___ Unknown

Death Information
- Date of Death: (MM/DD/YYYY)
- Check if date of death is approximate: ___

Additional Information
- Additional Information: ______________________________

CF DIAGNOSIS

History of patient diagnosis
- Date of Diagnosis: (MM/DD/YYYY)
- Date is an approximation: ___

Diagnosis:
- ___ Cystic Fibrosis
- ___ CFTR-related metabolic syndrome
- ___ CFTR-related disorder
- ___ CF, CRMS and CFTR-related disorder all ruled out

Patient was diagnosed with CF after false negative result by newborn screening:
- ___ Yes ___ No ___ Unknown

Diagnosis Suggested by the following:
- ___ Acute or persistent respiratory abnormalities
- ___ CBAVD (absent vas deferens) or related abnormalities
- ___ Digital clubbing
- ___ DNA Analysis
- ___ Edema
- ___ Electrolyte imbalance
- ___ Elevated immunoreactive trypsinogen (IRT) at CF newborn screening
- ___ Failure to thrive/malnutrition
- ___ Family history
- ___ Infertility/GU abnormalities
- ___ Less than 2 identified disease causing mutations
- ___ Liver problems
- ___ Meconium ileus/other intestinal obstruction (provide details below)
 - ___ meconium ileus with perforation
 - ___ meconium ileus without perforation
 - Other neonatal bowel obstruction: ______________
- ___ Nasal polyps/sinus disease
- ___ Newborn (neonatal) screening
- ___ Non-diagnostic sweat chloride value(<60 mmol/L)
- ___ Pancreatitis (not explained by other etiologies)
- ___ Persistent respiratory colonization/infection with a typical CF pathogen(s) (e.g., Pseudomonas aeruginosa)
- ___ Prenatal screening (CVS, amnio)
- ___ Pulmonary mycobacterial infection
- ___ Rectal prolapsed
- ___ Repeat Normal Sweat Testing
- ___ Steatorrhea/abnormal stools/malabsorption
- ___ Transepithelial potential differences
- ___ Other, specify: ______________
- ___ Unknown

Date & value of documented positive quantitative pilocarpine iontophoresis sweat test (Chloride)
- Date of Test: MM/DD/YY
- Value (mmol/L): ______________
- Quantity Not Sufficient: ___

If sweat test value <=60, CF diagnosis was suggested by:
- ___ DNA Analysis/genotyping
- ___ Transepithelial potential differences
- ___ Clinical presentation (pancreatic fxn tests, Microbiology, etc.)
- ___ Unknown

Key:
- FORM NAME: radio buttons (select one option only) check box (multiple selections allowed) *repeated entries can be recorded
- [] indicates values calculated by the registry
2013 Cystic Fibrosis Foundation Patient Registry Questionnaire

Parents’ Information (information not required for patients 21 years of age and older)
Not available: □
Mother height: _____ cm □ inches
Father height: _____ cm □ inches

Birth Measurements
Baby delivered:
□ Full term (>= 37 weeks gestational age)
□ Premature (< 37 weeks gestational age)
□ Unknown
Specify gestational age (only if premature): _______
Birth length: _____ cm □ inches
Birth weight: _____ kg □ lb

Genotype Information
For a list of mutation options, please contact reghelp@cff.org
Has this patient been genotyped? ___ Yes ___ No
Date: (MM/DD/YYYY) Date is an approximation: □
Select Mutation 1: ________ Other genotype: ___________
Poly T tract: □ 5T □ 7T □ 9T □ Unknown
Poly TG repeats: □ 9 □ 10 □ 11 □ 12 □ 13
□ Other/unknown/not done
Select Mutation 2: ________ Other genotype: ___________
Poly T tract: □ 5T □ 7T □ 9T □ Unknown
Poly TG repeats: □ 9 □ 10 □ 11 □ 12 □ 13
□ Other/unknown/not done
Select Mutation 3: ________ Other genotype: ___________
Additional information about genotype not captured above: ___

ENCOUNTER DATA

Vital Signs/Encounter Start
Encounter date: (MM/DD/YYYY)
Location: □ Clinic □ Hospital □ Home IV
Non-clinic start date: (MM/DD/YYYY)
Non-clinic end date: (MM/DD/YYYY)
Height: _____ cm □ inches
[Height Percentile ______]
Weight: _____ kg □ lb
[Weight Percentile ______]
[BMI value: _______________]
[BMI Percentile: ____________]
[Weight for Length percentile: __________________]

Exacerbation Assessment
What was your assessment regarding pulmonary exacerbation at this visit?
□ Absent
□ Mild exacerbation
□ Moderate exacerbation
□ Severe exacerbation
Key:
FORM NAME
□ radio buttons (select one option only)
□ check box (multiple selections allowed)

If you determined that an exacerbation was present, please select the treatment course prescribed to treat the exacerbation:
□ Increased airway clearance, exercise, and/or bronchodilators
□ Oral NON-quinolone antibiotic (e.g. azithromycin, Bactrim, Augmentin, etc.)
□ Oral quinolone antibiotic (e.g. ciprofloxacin (Cipro), levofloxacin)
□ Inhaled antibiotic
□ Inhaled antibiotic PLUS Oral NON-quinolone antibiotic
□ Inhaled antibiotic PLUS an oral quinolone antibiotic
□ None of the above
If none of the above, the specify: ___________________________
(Note: if you elected to treat with hospital or home IV antibiotics, please start a care episode and enter the requested data.)

Social Worker Consultation
□ Patient consulted with a Social Worker at this visit

Nutritional
□ Patient was seen by a Dietitian/Nutritionist at this visit

Pulmonary
□ Patient was seen by a Respiratory therapist/physical therapist at this visit

Other
Record any additional information about this encounter:
Custom field 1: ____________________________
Custom field 2: ____________________________
Custom field 3: ____________________________

Respiratory Microbiology

Bacterial Culture
Bacterial culture done? □
Date of Culture: (MM/DD/YYYY)
Type of Specimen:
□ sputum □ induced sputum
□ throat/nasal □ bronchoscopy
Culture Results:
□ Microorganisms □ Normal flora
□ No growth/sterile culture
Staphylococcus aureus: □
□ MRSA (methicillin resistant Staph aureus)
□ MSSA (methicillin sensitive Staph aureus)
Haemophilus influenzae (any species): □
Pseudomonas aeruginosa: □
□ mucoid □ non mucoid □ mucoid status unknown

*repeated entries can be recorded
[] indicates values calculated by the registry
Susceptibility Testing

Please use the most resistant PA strain. If multiple PA strains are resistant to the same number of classes of antibiotics then use the following schema: Beta lactams > Quinolones > Aminoglycosides.

Resistant to All Aminoglycosides Tested (e.g., tobramycin, gentamicin, amikacin):
- [] Yes
- [] No
- [] Testing not done

Resistant to All Beta Lactams Tested (e.g., ceftazidime, imipenem, meropenem, piperacillin/tazobactam (Zosyn), ticarcillin/clavulanic acid (Timentin), aztreonam):
- [] Yes
- [] No
- [] Testing not done

Resistant to All Quinolones Tested (e.g., ciprofloxacin, levofloxacin, moxifloxacin):
- [] Yes
- [] No
- [] Testing not done

Resistant to All Aminoglycosides Tested (e.g., tobramycin, gentamicin, amikacin):
- [] Yes
- [] No
- [] Testing not done

Other bacterial or fungal species:
- [] Check box (select one option only)
- [] Check box (multiple selections allowed)

Other microorganisms:

- [] Alcaligenes (Achromobacter) xylosoxidans
- [] Stenotrophomonas (Xanthomonas) Maltophilia

Other types:
- [] Acinetobacter baumannii
- [] Acinetobacter species - other*
- [] Agrobacterium species
- [] Brevundimonas species
- [] Cupriavidus metallidurans
- [] Cupriavidus sp
- [] Cupriavidus respiraci
- [] Delfia species - other*
- [] Exophila dermatitidis
- [] Exophila species
- [] Herbaspirillum swarssii
- [] Herbaspirillum seropedicae
- [] Klebsiella pneumoniae
- [] Klebsiella species - other*
- [] Ochrobactrum species
- [] Pandoraea species
- [] Pandoraea norimbergensis
- [] Pandoraea sp
- [] Pandoraea sp
- [] Pandoraea species - other*
- [] Pseudomonas stutzeri
- [] Pseudomonas species - other*
- [] Pseudomonas species - other*
- [] Ralstonia insidiosa
- [] Ralstonia pickettii
- [] Ralstonia species - other*
- [] Serratia marcescens
- [] Streptococcus milleri

Fungal/Yeast:
- [] Aspergillus (any species)
- [] Candida (any species)
- [] Scedosporium species

Key:

- [] Radio buttons (select one option only)
- [] Check box (multiple selections allowed)

*repeated entries can be recorded

[] indicates values calculated by the registry
2013 Cystic Fibrosis Foundation Patient Registry Questionnaire

Colistin: □
Frequency: ○ Alternate Month
○ Continuous
○ Other regimen (different dose or freq)

Aztreonam – Inhaled: □
Frequency: ○ 75 mg TID Alternate Month Schedule
○ 75 mg TID Continuous
○ Other Regimen

Chronic oral macrolide antibiotic: □
□ azithromycin (Zithromax)
□ clarithromycin (Biaxin)

Other chronic oral antibiotic: □
□ Quinolone (Cipro, Levaflox, gatifloxacin, etc.)
□ Cephalosporin (cephalexin, Keflex, cefixime, etc.)
□ Sulfua (Bactrim, Septra, etc.)
□ Amoxicillin (Augmentin, etc.)
□ Tetracycline (doxycycline, Vibramycin, minocycline, etc.)
□ Other

CFTR Modulators
Ivacaftor (e.g. Kalydeco, VX-770): □
Frequency: ○ 150mg BID
○ Other Regimen

Other Medications
Dornase alfa (i.e. Pulmozyme): □
Frequency: ○ 2.5 mg QD
○ 2.5 mg BID
○ Other regimen (different dose or frequency)

Acetylcysteine or Mucomist:

Hypertonic saline: □
Concentration (%): ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9 ○ 10
Frequency: ○ QD ○ BID ○ Other

Bronchodilators (oral):
□ Beta agonist (e.g. Proventil Repetabs, Volmax, etc.)
□ Theophylline product (e.g. Theodur, Slo-bid, Uniphyll)

Bronchodilators (inhaled)
□ Short acting beta agonist (e.g. albuterol, Proventil, Ventolin, Xopenex, etc.)
□ Long acting beta agonist (e.g. salmeterol, Serevent, Foradil, Brovana, etc.)
□ Short acting anticholinergic (e.g. ipratroprium, Atrovent)
□ Long acting anticholinergic (e.g. tiotroprium, Spiriva, etc.)
□ Combination beta agonist and anticholinergic (e.g. Combivent, DuoNeb, etc.)

Corticosteroids:
□ Oral (e.g. prednisone)
□ Inhaled (e.g. fluticasone, Flovent, budenoside, Pulmicort, etc.)
□ Inhaled in combination with a bronchodilator (e.g. Advair, Symbicort)

Other:
□ Leukotriene modifiers (e.g. montelukast, Singulair, zafirlukast, Accolate, zileuton, Zyflo, etc.)
□ Mast cell stabilizers (e.g. cromolyn, Intal, nedocromil, Tilde, etc.)
□ Antifungals (e.g. itraconazole, Sporanox) Note: exclude topical agents for skin conditions and agents used for oral thrush

Drug Intolerance/Allergies:
□ Dornase alfa (i.e. Pulmozyme)
□ Tobramycin solution for inhalation (i.e. TOBI)
□ Aztreonam
□ Colistin
□ Macrolide antibiotics
□ High-dose ibuprofen
□ Hypertonic saline

GI/Nutrition/Endocrine Medications
This Patient is on enzyme medications: ○ Yes ○ No
For all enzymes, "capsules per largest meal” options are:
○ .5 ○ 1 ○ 2 ○ 3 ○ 4 ○ 5 ○ 6 ○ 7 ○ 8 ○ 9 ○ 10
○ 10 ○ 10+
“Total capsules per day” is a numeric free text field.

Enzymes
Creon
Creon 1203: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Creon 1206: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Creon 1212: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Creon 1224: □
Number of capsules per largest meal of the day:____
Total capsules per day:____

Pancreaze
Pancreaze MT4: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Pancreaze MT10: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Pancreaze MT16: □
Number of capsules per largest meal of the day:____
Total capsules per day:____
Pancreaze MT20: □
Number of capsules per largest meal of the day:____
Total capsules per day:____

Key:
FORM NAME
○ radio buttons (select one option only)
□ check box (multiple selections allowed)

*repeated entries can be recorded
[] indicates values calculated by the registry
Ultrasound
- **Ultresa**
 - **Ultresa 14**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
 - **Ultresa 20**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
 - **Ultresa 23**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____

Pancrecarb
- **Pancrecarb MS-4**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Pancrecarb MS-8**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Pancrecarb MS-16**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____

Zenpep
- **Zenpep 3**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Zenpep 5**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Zenpep 10**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Zenpep 15**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Zenpep 20**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Zenpep 25**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____

Viokace
- **Viokace 10**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____
- **Viokace 20**: □
 - Number of capsules per largest meal of the day: ____
 - Total capsules per day: ____

Other Enzymes
- Please specify if other enzymes: ______________________

Acid Blocker
- **Acid Blocker** (Daily use. Check all that apply since last visit):
 - □ H2 Blocker (e.g. Zantac, Pepcid, etc.)
 - □ Proton Pump Inhibitor (e.g. Prilosec, Nexium, etc.)
 - □ Unknown

GI other
- Ursodeoxycholic acid: □

Pulmonary
- **Pulmonary Function Tests (PFTs)**
 - Unable to Perform test: □
 - Reason why PFTs have not been done: __________
 - **FVC measure (L):** __________
 - [Predicted value: _______]
 - [Reference equation: _______]
 - [% Predicted: _______]
 - [Relative change since previous measurement: _______]
 - [Days since last measured: _______]
 - **FEV1 measure (L):** __________
 - [Predicted value: _______]
 - [Reference equation: _______]
 - [% Predicted: _______]
 - [Relative change since previous measurement: _______]
 - [Days since last measured: _______]
 - **FEF25-75 measure (L):** __________
 - [Predicted value: _______]
 - [Reference equation: _______]
 - [% Predicted: _______]
 - [Relative change since previous measurement: _______]
 - [Days since last measured: _______]
 - **CF Specific FEV1 percentile (ages 6-21):** []

GI/Nutrition
- **Assessment of Oral Intake:** □ Done □ Not done
- **Is patient currently receiving supplemental feeding?**
 - □ Yes □ No □ Unknown
 - **Feeding:**
 - □ oral supplementation (Scandishakes, Pediasure, Instant Breakfast, etc.)
 - □ nasogastric tube (NG)
 - □ gastrostomy tube/button (G-Tube)
 - □ jejunal tube (J-tube)
 - □ total parenteral nutrition (TPN)
 - **CF specific vitamins (i.e. with additional vitamins A, D, E, and K):** □ Yes □ No

Infants under 2 years of age
- **Salt supplementation:** □ Yes □ No

Select type of feeding:
 - □ Breast milk
 - □ Breast milk plus formula
 - □ Formula exclusively
 - □ Other food
 - □ Unknown

Key:
- □ radio buttons (select one option only)
- □ check box (multiple selections allowed)

*repeated entries can be recorded
[] indicates values calculated by the registry
2013 Cystic Fibrosis Foundation Patient Registry Questionnaire

If receiving any formula feeding, select type of formula and caloric density:
- Cow’s milk
- Soy milk
- Predigested
- Other

Caloric Density:
- 20 cal/oz
- 22 cal/oz
- 24 cal/oz
- 27 cal/oz
- 30 cal/oz
- Other, specify: _____________

Complications
Patient does not have any complications: □

CFRD Status
- Impaired Glucose Tolerance (FBG < 126, 2-h PG 140-199)
- CFRD with or without fasting hyperglycemia
 - CFRD secondary complications:
 - Retinopathy
 - Microalbuminuria
 - Chronic renal insufficiency
 - Chronic renal failure requiring dialysis
 - Peripheral neuropathy

Hepatobiliary
- Gall stones
- Gall stones, requiring surgery/procedure
- Liver disease, cirrhosis
 - Please specify complications related to cirrhosis:
 - Esophageal varices
 - Gastric varices
 - GI bleed related to varices
 - Splenomegaly
 - Hypersplenism (i.e., WBC <3.0 or platelets <100,000)
 - Ascites
 - Liver disease, non-cirrhosis
 - Hepatic Steatosis
 - Liver disease, other: _____________

Bones/Joints
- Arthritis/Arthropathy
- Bone fracture
- Osteopenia
- Osteoporosis

Pulmonary
- Allergic Bronchial Pulmonary Aspergillosis (ABPA)
- Asthma
- Hemoptysis, massive
- Pneumothorax requiring chest tube

GI
- Distal intestinal obstruction syndrome (DIOS, Meconium ileus equiv.)
- Fibrosing colonopathy/colonic stricture (report incidence only)
- GERD (Gastro-Esophageal Reflux Disease)
- GI Bleed req hosp non variceal

Key:
- □ radio buttons (select one option only)
- □ check box (multiple selections allowed)

- History of intestinal or colon surgery
- Pancreatitis
- Peptic ulcer disease
- Rectal prolapse

Other Complications
- Absence of Vas Deferens
- Anxiety Disorder
- Cancer confirmed by histology
- Depression
- Hearing loss
- Hypertension
- Kidney Stones
- Nasal polyps requiring surgery
- Renal failure requiring dialysis (cause other than CFRD)
- Sinus Disease (symptomatic)

Complications not listed above
Enter additional complications: _______________________

Lab
Blood counts
- WBC count x1,000/microL (typical clinical value: 3.0 to 30.0): ______
- Platelet Count x1,000/microL (typical clinical value: 100 to 500):_____
- Hemoglobin (grams per deciliter): ______

Serum Creatinine
- Serum Creatinine Level (mg/dL): ______

Liver Function Tests (LFTs)
- Alanine Aminotransferase (ALT or SGPT), IU/L: ______
- GGTP (gamma glutamyl transpeptidase), IU/L: ______

Glucose Test
- Random blood glucose (mg/dL):________
- Fasting blood glucose (mg/dL):_____

If OGTT performed:
- OGTT Fasting glucose level (mg/dL):_____
- 2 hour (mg/dL):_____

Hemoglobin A1C (Hgb A1C)
- Hgb A1C value, %:_____

Fecal Elastase
- Fecal Elastase Value (microg/g of stool):_____

Act/Exercise
Primary Airway Clearance Technique (ACT)
- Positive Expiratory Pressure (PEP)
- Postural drainage with clapping (CPT)
- Forced expiratory techniques (e.g. autogenic drainage, huff cough, active cycle breathing)
- Oscillating PEP (e.g. Flutter, acapella, IPV)
- High frequency chest wall oscillation (e.g. Vest)
- Exercise

*repeated entries can be recorded
[] indicates values calculated by the registry
2013 Cystic Fibrosis Foundation Patient Registry Questionnaire

Secondary Airway Clearance Technique (ACT)
- Positive Expiratory Pressure (PEP)
- Postural drainage with clapping (CPT)
- Forced expiratory techniques (e.g. autogenic drainage, huff cough, active cycle breathing)
- Oscillating PEP (e.g. Flutter, acapella, IPV)
- High frequency chest wall oscillation (e.g. Vest)
- Exercise

Care Episode Segment*
- Start date: (MM/DD/YYYY)
- End date: (MM/DD/YYYY)
- Location: Hospital or Home IV
- Reasons:
 - Pulmonary Exacerbation
 - Pulmonary Complication Other than exacerbation
 - GI Complications
 - Transplant related
 - Sinus infection
 - Non-transplant surgery
 - Other
 - Please specify reason:

Care Episode Measurements
At the beginning of Care Episode:
- FVC (L):_______
- FEV1 (L):_______
- FEF25-75 (L):_______
- Height: _____ cm or inches
- Weight: _____ kg or lb
- Date recorded: (MM/DD/YYYY)
- Check if data were impossible to measure:

At the end of Care Episode:
- FVC (L):_______
- FEV1 (L):_______
- FEF25-75 (L):_______
- Height: _____ cm or inches
- Weight: _____ kg or lb
- Date recorded: (MM/DD/YYYY)
- Check if data were impossible to measure:

Comments:

ANNUAL REVIEW
Annual Review Year: (YYYY)

Patient Statistics
Number of Encounters recorded by Center: []
Number of Encounters recorded by other Care Centers: []
Number of Care Episodes recorded by Care Center: []
Number of Care Episodes recorded by Other Care Centers: []

Demographics Update
- Current Zip: _____
- Patient is: [alive or dead]

Pulmonary
- Did this patient use oxygen therapy during the reporting year?
 - Yes, Continuously
 - Yes, Nocturnal and/or with exertion
 - Yes, During exacerbation
 - Yes, prn
 - No
 - Unknown

- Did this patient use non-invasive ventilation during the reporting year (i.e., assisted breathing, BiPap, CPAP, etc)
 - Yes
 - No
 - Unknown

- Was a Chest X Ray performed during the reporting year? (Sept through Jan)?
 - Yes
 - No
 - Unknown

- Did this patient receive an influenza vaccination this season?
 - Yes
 - No
 - Unknown

Mycobacterial Culture
- [According to the encounters a Mycobacterial culture has been performed during this reporting year:]
 - Yes
 - No

- Was treatment INITIATED for a pulmonary mycobacterial infection during this reporting year?
 - Yes
 - No
 - Unknown

- Was an IgE screening for ABPA performed in this reporting year?
 - Yes
 - No

- Did this patient smoke cigarettes during the reporting year?
 - No
 - Occasionally
 - Yes, Regularly, less than 1 ppd
 - Yes, Regularly, 1 ppd or more
 - Declined to answer
 - Not Known
 - Not Applicable

- Does anyone in the patient’s household smoke cigarettes?
 - Yes
 - No

- During the reporting year, how often was this patient exposed to secondhand smoke?
 - Daily
 - Several Times Per Week
 - Several Times Per Month or less
 - Never
 - Declined to answer
 - Not Known

*repeated entries can be recorded
[] indicates values calculated by the registry
Growth and Nutrition

- Fat soluble vitamin levels measured?
 - Yes
 - No
 - Unknown

- Has this patient been on growth hormone in the reporting year?
 - Yes
 - No
 - Unknown

- Was a DEXA scan for bone density performed in the reporting year? Please enter findings of osteoporosis or osteopenia into the complications section of last patient encounter.
 - Yes
 - No
 - Unknown

Results of DEXA Scan:

- Normal
- Osteopenia
- Osteoporosis
- Other
- Unknown

Update on CFRD Status

Status from recent encounter [does or does not] indicate CFRD.

- Normal Glucose Metabolism (includes normal, random, fasting, or OGTT)
- Impaired Glucose Tolerance (FBG < 126, 2-h PG 140-199)
- CF-related diabetes with or without fasting hyperglycemia (2-h PG >= 200)

- Was a retinal eye exam performed by an ophthalmologist in this reporting year?
 - Yes
 - No
 - Unknown

- Was a spot urine sent for albumin/creatinine ratio in this reporting year?
 - Yes
 - No
 - Unknown

- Was the patient prescribed treatment for CFRD?
 - Yes
 - No

Select all that apply:

- Dietary change
- Oral hypoglycemic agents
- Intermittent insulin (with illness, steroids, etc.)
- Chronic insulin

- Did the patient experience any episodes of severe hypoglycemia (became unconscious or required help to resolve) during the reporting year?
 - Yes
 - No
 - Unknown

Transplantation

- What is the transplantation status of the patient currently? If the patient had transplantation in previous years please select or keep "Had transplantation" option.
 - Not pertinent
 - Accepted, on waiting list
 - Evaluated, final decision pending
 - Evaluated, rejected
 - Had transplantation

Transplant

- Lung: Bilateral
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Heart/lung
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Lung: Lobar/Cadaveric
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Lung: Lobar/living donor
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Liver
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Kidney
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)
- Other
 - Number this year: __ Date of last transplant: (MM/DD/YYYY)

Specify transplant type: _______

- Were there post transplant complications?
 - Yes
 - No
 - Unknown

Select those that apply:

- Bronchiolitis obliterans syndrome
- Lympho-proliferative disorder
- Other
 - Specify other complication: ________________________

Clinical Trials

- Has this patient participated in any interventional (drug) studies?
 - Yes
 - No
 - Unknown

- Has this patient participated in any observational studies?
 - Yes
 - No
 - Unknown

Health Insurance Coverage

- It is important for us to have accurate numbers of patients who have specific types of coverage:
 - Health Insurance Policy (e.g. Private Insurance)
 - Medicare
 - Medicaid
 - State special needs program, e.g., BCMH, CCS, CRS, GHPP, etc.
 - TriCare or other military health plan
 - Indian Health Service
 - Other
 - Specify if other insurance: ________________________

- Patient has no health insurance: □

- Was patient covered under parent’s health insurance plan?
 - Yes
 - No
 - Unknown

- Did patient receive free medicine or co-pay/deductible assistance from a Patient Assistance Program?
 - Yes
 - No
 - Unknown

Key:

- ☐ radio buttons (select one option only)
- ☐ check box (multiple selections allowed)

*repeated entries can be recorded [] indicates values calculated by the registry
Socio-economic Status
Education of Patient:
○ Less than High School
○ High School diploma or equivalent
○ Some College
○ College Graduate
○ Masters/Doctoral level degree
○ Unknown/Not applicable

Education of father of patient:
○ Less than High School
○ High School diploma or equivalent
○ Some College
○ College Graduate
○ Masters/Doctoral level degree
○ Unknown/Not applicable

Education of mother of patient:
○ Less than High School
○ High School diploma or equivalent
○ Some College
○ College Graduate
○ Masters/Doctoral level degree
○ Unknown/Not applicable

Education of spouse of patient:
○ Less than High School
○ High School diploma or equivalent
○ Some College
○ College Graduate
○ Masters/Doctoral level degree
○ Unknown/Not applicable

What was the total combined income of the household before taxes where the patient resided for the majority of the reporting year?
○ <$10,000
○ $10,000 to $19,999
○ $20,000 to $29,999
○ $30,000 to $39,999
○ $40,000 to $49,999
○ $50,000 to $59,999
○ $60,000 to $69,999
○ $70,000 to $79,999
○ $80,000 to $89,999
○ >$90,000
○ Unknown or Prefer not to Answer

How many people currently live in the patient’s household (including the patient)?
○ 1
○ 2
○ 3
○ 4
○ 5
○ 6
○ 7
○ 8
○ 9
○ 10
○ 11
○ 12 or more
○ Unknown

Employment:
○ Part Time
○ Full time homemaker
○ Full time employment
○ Unemployed
○ Student
○ Disabled
○ Retired
○ Unknown

Pregnancy
Was patient pregnant during the reporting year?
○ Yes
○ No
○ Unknown

If Yes, indicate outcome:
○ Live Birth
○ Still Birth
○ Spontaneous Abortion
○ Therapeutic Abortion
○ Undelivered
○ Unknown

Age 2 and Younger
Did the patient attend day care during this reporting year?
○ Yes
○ No
○ Unknown

Did the family receive genetic counseling this reporting year?
○ Yes
○ No
○ Unknown

Was the patient given palivizumab (Synagis) this season (Sept through January)?
○ Yes
○ No
○ Unknown

Other
Please use this field to record any additional information about this patient: _______________________________

Key:
FORM NAME
○ radio buttons (select one option only)
□ check box (multiple selections allowed)
*repeated entries can be recorded
[] indicates values calculated by the registry